Line 1,413: |
Line 1,413: |
| ==Note 8== | | ==Note 8== |
| | | |
− | <pre>
| + | The next four Tables expand the expressions of <math>\operatorname{E}f</math> and <math>\operatorname{D}f</math> in two different ways, for each of the sixteen functions. Notice that the functions are given in a different order, partitioned into seven natural classes by a group action. |
− | The next four Tables expand the expressions of Ef and Df | |
− | in two different ways, for each of the sixteen functions. | |
− | Notice that the functions are given in a different order, | |
− | partitioned into seven natural classes by a group action. | |
| | | |
− | Table 8-a. Ef Expanded Over Ordinary Features
| + | <br> |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | | f | Ef | pq | Ef | p(q) | Ef | (p)q | Ef | (p)(q)|
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_0 | () | () | () | () | () |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_1 | (p)(q) | dp dq | dp (dq) | (dp) dq | (dp)(dq) |
| |
− | | | | | | | |
| |
− | | f_2 | (p) q | dp (dq) | dp dq | (dp)(dq) | (dp) dq |
| |
− | | | | | | | |
| |
− | | f_4 | p (q) | (dp) dq | (dp)(dq) | dp dq | dp (dq) |
| |
− | | | | | | | |
| |
− | | f_8 | p q | (dp)(dq) | (dp) dq | dp (dq) | dp dq |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_3 | (p) | dp | dp | (dp) | (dp) |
| |
− | | | | | | | |
| |
− | | f_12 | p | (dp) | (dp) | dp | dp |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_6 | (p, q) | (dp, dq) | ((dp, dq)) | ((dp, dq)) | (dp, dq) |
| |
− | | | | | | | |
| |
− | | f_9 | ((p, q)) | ((dp, dq)) | (dp, dq) | (dp, dq) | ((dp, dq)) |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_5 | (q) | dq | (dq) | dq | (dq) |
| |
− | | | | | | | |
| |
− | | f_10 | q | (dq) | dq | (dq) | dq |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_7 | (p q) | ((dp)(dq)) | ((dp) dq) | (dp (dq)) | (dp dq) |
| |
− | | | | | | | |
| |
− | | f_11 | (p (q)) | ((dp) dq) | ((dp)(dq)) | (dp dq) | (dp (dq)) |
| |
− | | | | | | | |
| |
− | | f_13 | ((p) q) | (dp (dq)) | (dp dq) | ((dp)(dq)) | ((dp) dq) |
| |
− | | | | | | | |
| |
− | | f_14 | ((p)(q)) | (dp dq) | (dp (dq)) | ((dp) dq) | ((dp)(dq)) |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_15 | (()) | (()) | (()) | (()) | (()) |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
| | | |
− | Table 8-b. Df Expanded Over Ordinary Features
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" |
− | o------o------------o------------o------------o------------o------------o
| + | |+ <math>\text{Table A3.}~~\operatorname{E}f ~\text{Expanded Over Differential Features}~ \{ \operatorname{d}p, \operatorname{d}q \}</math> |
− | | | | | | | |
| + | |- style="background:#f0f0ff" |
− | | | f | Df | pq | Df | p(q) | Df | (p)q | Df | (p)(q)|
| + | | width="10%" | |
− | | | | | | | | | + | | width="18%" | <math>f\!</math> |
− | o------o------------o------------o------------o------------o------------o
| + | | width="18%" | |
− | | | | | | | | | + | <p><math>\operatorname{T}_{11} f</math></p> |
− | | f_0 | () | () | () | () | () |
| + | <p><math>\operatorname{E}f|_{\operatorname{d}p~\operatorname{d}q}</math></p> |
− | | | | | | | |
| + | | width="18%" | |
− | o------o------------o------------o------------o------------o------------o
| + | <p><math>\operatorname{T}_{10} f</math></p> |
− | | | | | | | | | + | <p><math>\operatorname{E}f|_{\operatorname{d}p(\operatorname{d}q)}</math></p> |
− | | f_1 | (p)(q) | dp dq | dp (dq) | (dp) dq | ((dp)(dq)) |
| + | | width="18%" | |
− | | | | | | | | | + | <p><math>\operatorname{T}_{01} f</math></p> |
− | | f_2 | (p) q | dp (dq) | dp dq | ((dp)(dq)) | (dp) dq | | + | <p><math>\operatorname{E}f|_{(\operatorname{d}p)\operatorname{d}q}</math></p> |
− | | | | | | | | | + | | width="18%" | |
− | | f_4 | p (q) | (dp) dq | ((dp)(dq)) | dp dq | dp (dq) |
| + | <p><math>\operatorname{T}_{00} f</math></p> |
− | | | | | | | |
| + | <p><math>\operatorname{E}f|_{(\operatorname{d}p)(\operatorname{d}q)}</math></p> |
− | | f_8 | p q | ((dp)(dq)) | (dp) dq | dp (dq) | dp dq |
| + | |- |
− | | | | | | | |
| + | | <math>f_0\!</math> |
− | o------o------------o------------o------------o------------o------------o
| + | | <math>(~)</math> |
− | | | | | | | | | + | | <math>(~)</math> |
− | | f_3 | (p) | dp | dp | dp | dp |
| + | | <math>(~)</math> |
− | | | | | | | |
| + | | <math>(~)</math> |
− | | f_12 | p | dp | dp | dp | dp | | + | | <math>(~)</math> |
− | | | | | | | |
| + | |- |
− | o------o------------o------------o------------o------------o------------o
| + | | |
− | | | | | | | |
| + | <math>\begin{matrix} |
− | | f_6 | (p, q) | (dp, dq) | (dp, dq) | (dp, dq) | (dp, dq) |
| + | f_1 |
− | | | | | | | |
| + | \\[4pt] |
− | | f_9 | ((p, q)) | (dp, dq) | (dp, dq) | (dp, dq) | (dp, dq) |
| + | f_2 |
− | | | | | | | |
| + | \\[4pt] |
− | o------o------------o------------o------------o------------o------------o
| + | f_4 |
− | | | | | | | | | + | \\[4pt] |
− | | f_5 | (q) | dq | dq | dq | dq | | + | f_8 |
− | | | | | | | | | + | \end{matrix}</math> |
− | | f_10 | q | dq | dq | dq | dq | | + | | |
− | | | | | | | | | + | <math>\begin{matrix} |
− | o------o------------o------------o------------o------------o------------o
| + | (p)(q) |
− | | | | | | | | | + | \\[4pt] |
− | | f_7 | (p q) | ((dp)(dq)) | (dp) dq | dp (dq) | dp dq |
| + | (p)~q~ |
− | | | | | | | |
| + | \\[4pt] |
− | | f_11 | (p (q)) | (dp) dq | ((dp)(dq)) | dp dq | dp (dq) |
| + | ~p~(q) |
− | | | | | | | |
| + | \\[4pt] |
− | | f_13 | ((p) q) | dp (dq) | dp dq | ((dp)(dq)) | (dp) dq |
| + | ~p~~q~ |
− | | | | | | | | | + | \end{matrix}</math> |
− | | f_14 | ((p)(q)) | dp dq | dp (dq) | (dp) dq | ((dp)(dq)) |
| + | | |
− | | | | | | | | | + | <math>\begin{matrix} |
− | o------o------------o------------o------------o------------o------------o
| + | ~p~~q~ |
− | | | | | | | | | + | \\[4pt] |
− | | f_15 | (()) | () | () | () | () |
| + | ~p~(q) |
− | | | | | | | |
| + | \\[4pt] |
− | o------o------------o------------o------------o------------o------------o
| + | (p)~q~ |
− | </pre> | + | \\[4pt] |
| + | (p)(q) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~p~(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \\[4pt] |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p)~q~ |
| + | \\[4pt] |
| + | (p)(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_3 |
| + | \\[4pt] |
| + | f_{12} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~p~ |
| + | \\[4pt] |
| + | (p) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~p~ |
| + | \\[4pt] |
| + | (p) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_6 |
| + | \\[4pt] |
| + | f_9 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((p,~q)) |
| + | \\[4pt] |
| + | ~(p,~q)~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((p,~q)) |
| + | \\[4pt] |
| + | ~(p,~q)~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_5 |
| + | \\[4pt] |
| + | f_{10} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~q~ |
| + | \\[4pt] |
| + | (q) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~q~ |
| + | \\[4pt] |
| + | (q) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_7 |
| + | \\[4pt] |
| + | f_{11} |
| + | \\[4pt] |
| + | f_{13} |
| + | \\[4pt] |
| + | f_{14} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~p~~q~) |
| + | \\[4pt] |
| + | (~p~(q)) |
| + | \\[4pt] |
| + | ((p)~q~) |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((p)(q)) |
| + | \\[4pt] |
| + | ((p)~q~) |
| + | \\[4pt] |
| + | (~p~(q)) |
| + | \\[4pt] |
| + | (~p~~q~) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((p)~q~) |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \\[4pt] |
| + | (~p~~q~) |
| + | \\[4pt] |
| + | (~p~(q)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~p~(q)) |
| + | \\[4pt] |
| + | (~p~~q~) |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \\[4pt] |
| + | ((p)~q~) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~p~~q~) |
| + | \\[4pt] |
| + | (~p~(q)) |
| + | \\[4pt] |
| + | ((p)~q~) |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | <math>((~))</math> |
| + | | <math>((~))</math> |
| + | | <math>((~))</math> |
| + | | <math>((~))</math> |
| + | | <math>((~))</math> |
| + | |- style="background:#f0f0ff" |
| + | | colspan="2" | <math>\text{Fixed Point Total}\!</math> |
| + | | <math>4\!</math> |
| + | | <math>4\!</math> |
| + | | <math>4\!</math> |
| + | | <math>16\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" |
| + | |+ <math>\text{Table A4.}~~\operatorname{D}f ~\text{Expanded Over Differential Features}~ \{ \operatorname{d}p, \operatorname{d}q \}</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="10%" | |
| + | | width="18%" | <math>f\!</math> |
| + | | width="18%" | |
| + | <math>\operatorname{D}f|_{\operatorname{d}p~\operatorname{d}q}</math> |
| + | | width="18%" | |
| + | <math>\operatorname{D}f|_{\operatorname{d}p(\operatorname{d}q)}</math> |
| + | | width="18%" | |
| + | <math>\operatorname{D}f|_{(\operatorname{d}p)\operatorname{d}q}</math> |
| + | | width="18%" | |
| + | <math>\operatorname{D}f|_{(\operatorname{d}p)(\operatorname{d}q)}</math> |
| + | |- |
| + | | <math>f_0\!</math> |
| + | | <math>(~)</math> |
| + | | <math>(~)</math> |
| + | | <math>(~)</math> |
| + | | <math>(~)</math> |
| + | | <math>(~)</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_1 |
| + | \\[4pt] |
| + | f_2 |
| + | \\[4pt] |
| + | f_4 |
| + | \\[4pt] |
| + | f_8 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((p,~q)) |
| + | \\[4pt] |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \\[4pt] |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_3 |
| + | \\[4pt] |
| + | f_{12} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((~)) |
| + | \\[4pt] |
| + | ((~)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((~)) |
| + | \\[4pt] |
| + | ((~)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_6 |
| + | \\[4pt] |
| + | f_9 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((~)) |
| + | \\[4pt] |
| + | ((~)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((~)) |
| + | \\[4pt] |
| + | ((~)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_5 |
| + | \\[4pt] |
| + | f_{10} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((~)) |
| + | \\[4pt] |
| + | ((~)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((~)) |
| + | \\[4pt] |
| + | ((~)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_7 |
| + | \\[4pt] |
| + | f_{11} |
| + | \\[4pt] |
| + | f_{13} |
| + | \\[4pt] |
| + | f_{14} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p~~q)~ |
| + | \\[4pt] |
| + | ~(p~(q)) |
| + | \\[4pt] |
| + | ((p)~q)~ |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((p,~q)) |
| + | \\[4pt] |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~q~ |
| + | \\[4pt] |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \\[4pt] |
| + | (q) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~p~ |
| + | \\[4pt] |
| + | ~p~ |
| + | \\[4pt] |
| + | (p) |
| + | \\[4pt] |
| + | (p) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | <math>((~))</math> |
| + | | <math>(~)</math> |
| + | | <math>(~)</math> |
| + | | <math>(~)</math> |
| + | | <math>(~)</math> |
| + | |} |
| + | |
| + | <br> |
| | | |
| ==Note 9== | | ==Note 9== |