Line 862: |
Line 862: |
| ==Note 7== | | ==Note 7== |
| | | |
− | <pre>
| + | To broaden our experience with simple examples, let us examine the sixteen functions of concrete type <math>P \times Q \to \mathbb{B}</math> and abstract type <math>\mathbb{B} \times \mathbb{B} \to \mathbb{B}.</math> A few Tables are set here that detail the actions of <math>\operatorname{E}</math> and <math>\operatorname{D}</math> on each of these functions, allowing us to view the results in several different ways. |
− | To broaden our experience with simple examples, let us | |
− | now contemplate the sixteen functions of concrete type
| |
− | !P! x !Q! -> B and abstract type B x B -> B. For ease
| |
− | of future reference, I will set here a few tables that
| |
− | specify the actions of E and D on the 16 functions and
| |
− | allow us to view the results in several different ways.
| |
| | | |
− | By way of initial orientation, Table 7 lists equivalent expressions
| + | Tables A1 and A2 show two ways of arranging the 16 boolean functions on two variables, giving equivalent expressions for each function in several different systems of notation. |
− | for the sixteen functions in several different formalisms, indexing | |
− | systems, or languages for the propositional calculus, also known as | |
− | "zeroth order logic" (ZOL).
| |
| | | |
− | Table 7. Propositional Forms on Two Variables | + | <br> |
− | o---------o---------o---------o----------o------------------o----------o
| + | |
− | | L_1 | L_2 | L_3 | L_4 | L_5 | L_6 | | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" |
− | | | | | | | | | + | |+ <math>\text{Table A1.}~~\text{Propositional Forms on Two Variables}</math> |
− | | Decimal | Binary | Vector | Cactus | English | Ordinary |
| + | |- style="background:#f0f0ff" |
− | o---------o---------o---------o----------o------------------o----------o
| + | | width="15%" | |
− | | | p : 1 1 0 0 | | | | | + | <p><math>\mathcal{L}_1</math></p> |
− | | | q : 1 0 1 0 | | | | | + | <p><math>\text{Decimal}</math></p> |
− | o---------o---------o---------o----------o------------------o----------o
| + | | width="15%" | |
− | | | | | | | | | + | <p><math>\mathcal{L}_2</math></p> |
− | | f_0 | f_0000 | 0 0 0 0 | () | false | 0 |
| + | <p><math>\text{Binary}</math></p> |
− | | | | | | | |
| + | | width="15%" | |
− | | f_1 | f_0001 | 0 0 0 1 | (p)(q) | neither p nor q | ~p & ~q |
| + | <p><math>\mathcal{L}_3</math></p> |
− | | | | | | | |
| + | <p><math>\text{Vector}</math></p> |
− | | f_2 | f_0010 | 0 0 1 0 | (p) q | q and not p | ~p & q |
| + | | width="15%" | |
− | | | | | | | |
| + | <p><math>\mathcal{L}_4</math></p> |
− | | f_3 | f_0011 | 0 0 1 1 | (p) | not p | ~p |
| + | <p><math>\text{Cactus}</math></p> |
− | | | | | | | |
| + | | width="25%" | |
− | | f_4 | f_0100 | 0 1 0 0 | p (q) | p and not q | p & ~q |
| + | <p><math>\mathcal{L}_5</math></p> |
− | | | | | | | | | + | <p><math>\text{English}</math></p> |
− | | f_5 | f_0101 | 0 1 0 1 | (q) | not q | ~q |
| + | | width="15%" | |
− | | | | | | | |
| + | <p><math>\mathcal{L}_6</math></p> |
− | | f_6 | f_0110 | 0 1 1 0 | (p, q) | p not equal to q | p + q |
| + | <p><math>\text{Ordinary}</math></p> |
− | | | | | | | |
| + | |- style="background:#f0f0ff" |
− | | f_7 | f_0111 | 0 1 1 1 | (p q) | not both p and q | ~p v ~q |
| + | | |
− | | | | | | | |
| + | | align="right" | <math>p\colon\!</math> |
− | | f_8 | f_1000 | 1 0 0 0 | p q | p and q | p & q |
| + | | <math>1~1~0~0\!</math> |
− | | | | | | | | | + | | |
− | | f_9 | f_1001 | 1 0 0 1 | ((p, q)) | p equal to q | p = q | | + | | |
− | | | | | | | | | + | | |
− | | f_10 | f_1010 | 1 0 1 0 | q | q | q | | + | |- style="background:#f0f0ff" |
− | | | | | | | | | + | | |
− | | f_11 | f_1011 | 1 0 1 1 | (p (q)) | not p without q | p => q | | + | | align="right" | <math>q\colon\!</math> |
− | | | | | | | | | + | | <math>1~0~1~0\!</math> |
− | | f_12 | f_1100 | 1 1 0 0 | p | p | p |
| + | | |
− | | | | | | | | | + | | |
− | | f_13 | f_1101 | 1 1 0 1 | ((p) q) | not q without p | p <= q |
| + | | |
− | | | | | | | | | + | |- |
− | | f_14 | f_1110 | 1 1 1 0 | ((p)(q)) | p or q | p v q | | + | | |
− | | | | | | | | | + | <math>\begin{matrix} |
− | | f_15 | f_1111 | 1 1 1 1 | (()) | true | 1 | | + | f_0 |
− | | | | | | | | | + | \\[4pt] |
− | o---------o---------o---------o----------o------------------o----------o
| + | f_1 |
− | </pre> | + | \\[4pt] |
| + | f_2 |
| + | \\[4pt] |
| + | f_3 |
| + | \\[4pt] |
| + | f_4 |
| + | \\[4pt] |
| + | f_5 |
| + | \\[4pt] |
| + | f_6 |
| + | \\[4pt] |
| + | f_7 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{0000} |
| + | \\[4pt] |
| + | f_{0001} |
| + | \\[4pt] |
| + | f_{0010} |
| + | \\[4pt] |
| + | f_{0011} |
| + | \\[4pt] |
| + | f_{0100} |
| + | \\[4pt] |
| + | f_{0101} |
| + | \\[4pt] |
| + | f_{0110} |
| + | \\[4pt] |
| + | f_{0111} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0~0~0~0 |
| + | \\[4pt] |
| + | 0~0~0~1 |
| + | \\[4pt] |
| + | 0~0~1~0 |
| + | \\[4pt] |
| + | 0~0~1~1 |
| + | \\[4pt] |
| + | 0~1~0~0 |
| + | \\[4pt] |
| + | 0~1~0~1 |
| + | \\[4pt] |
| + | 0~1~1~0 |
| + | \\[4pt] |
| + | 0~1~1~1 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \\[4pt] |
| + | (p)~~~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \\[4pt] |
| + | ~~~(q) |
| + | \\[4pt] |
| + | (p,~q) |
| + | \\[4pt] |
| + | (p~~q) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \text{false} |
| + | \\[4pt] |
| + | \text{neither}~ p ~\text{nor}~ q |
| + | \\[4pt] |
| + | q ~\text{without}~ p |
| + | \\[4pt] |
| + | \text{not}~ p |
| + | \\[4pt] |
| + | p ~\text{without}~ q |
| + | \\[4pt] |
| + | \text{not}~ q |
| + | \\[4pt] |
| + | p ~\text{not equal to}~ q |
| + | \\[4pt] |
| + | \text{not both}~ p ~\text{and}~ q |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0 |
| + | \\[4pt] |
| + | \lnot p \land \lnot q |
| + | \\[4pt] |
| + | \lnot p \land q |
| + | \\[4pt] |
| + | \lnot p |
| + | \\[4pt] |
| + | p \land \lnot q |
| + | \\[4pt] |
| + | \lnot q |
| + | \\[4pt] |
| + | p \ne q |
| + | \\[4pt] |
| + | \lnot p \lor \lnot q |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_8 |
| + | \\[4pt] |
| + | f_9 |
| + | \\[4pt] |
| + | f_{10} |
| + | \\[4pt] |
| + | f_{11} |
| + | \\[4pt] |
| + | f_{12} |
| + | \\[4pt] |
| + | f_{13} |
| + | \\[4pt] |
| + | f_{14} |
| + | \\[4pt] |
| + | f_{15} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{1000} |
| + | \\[4pt] |
| + | f_{1001} |
| + | \\[4pt] |
| + | f_{1010} |
| + | \\[4pt] |
| + | f_{1011} |
| + | \\[4pt] |
| + | f_{1100} |
| + | \\[4pt] |
| + | f_{1101} |
| + | \\[4pt] |
| + | f_{1110} |
| + | \\[4pt] |
| + | f_{1111} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 1~0~0~0 |
| + | \\[4pt] |
| + | 1~0~0~1 |
| + | \\[4pt] |
| + | 1~0~1~0 |
| + | \\[4pt] |
| + | 1~0~1~1 |
| + | \\[4pt] |
| + | 1~1~0~0 |
| + | \\[4pt] |
| + | 1~1~0~1 |
| + | \\[4pt] |
| + | 1~1~1~0 |
| + | \\[4pt] |
| + | 1~1~1~1 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~~p~~q~~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \\[4pt] |
| + | ~~~~~q~~ |
| + | \\[4pt] |
| + | ~(p~(q)) |
| + | \\[4pt] |
| + | ~~p~~~~~ |
| + | \\[4pt] |
| + | ((p)~q)~ |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \\[4pt] |
| + | ((~)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | p ~\text{and}~ q |
| + | \\[4pt] |
| + | p ~\text{equal to}~ q |
| + | \\[4pt] |
| + | q |
| + | \\[4pt] |
| + | \text{not}~ p ~\text{without}~ q |
| + | \\[4pt] |
| + | p |
| + | \\[4pt] |
| + | \text{not}~ q ~\text{without}~ p |
| + | \\[4pt] |
| + | p ~\text{or}~ q |
| + | \\[4pt] |
| + | \text{true} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | p \land q |
| + | \\[4pt] |
| + | p = q |
| + | \\[4pt] |
| + | q |
| + | \\[4pt] |
| + | p \Rightarrow q |
| + | \\[4pt] |
| + | p |
| + | \\[4pt] |
| + | p \Leftarrow q |
| + | \\[4pt] |
| + | p \lor q |
| + | \\[4pt] |
| + | 1 |
| + | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" |
| + | |+ <math>\text{Table A2.}~~\text{Propositional Forms on Two Variables}</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_1</math></p> |
| + | <p><math>\text{Decimal}</math></p> |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_2</math></p> |
| + | <p><math>\text{Binary}</math></p> |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_3</math></p> |
| + | <p><math>\text{Vector}</math></p> |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_4</math></p> |
| + | <p><math>\text{Cactus}</math></p> |
| + | | width="25%" | |
| + | <p><math>\mathcal{L}_5</math></p> |
| + | <p><math>\text{English}</math></p> |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_6</math></p> |
| + | <p><math>\text{Ordinary}</math></p> |
| + | |- style="background:#f0f0ff" |
| + | | |
| + | | align="right" | <math>p\colon\!</math> |
| + | | <math>1~1~0~0\!</math> |
| + | | |
| + | | |
| + | | |
| + | |- style="background:#f0f0ff" |
| + | | |
| + | | align="right" | <math>q\colon\!</math> |
| + | | <math>1~0~1~0\!</math> |
| + | | |
| + | | |
| + | | |
| + | |- |
| + | | <math>f_0\!</math> |
| + | | <math>f_{0000}\!</math> |
| + | | <math>0~0~0~0</math> |
| + | | <math>(~)</math> |
| + | | <math>\text{false}\!</math> |
| + | | <math>0\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_1 |
| + | \\[4pt] |
| + | f_2 |
| + | \\[4pt] |
| + | f_4 |
| + | \\[4pt] |
| + | f_8 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{0001} |
| + | \\[4pt] |
| + | f_{0010} |
| + | \\[4pt] |
| + | f_{0100} |
| + | \\[4pt] |
| + | f_{1000} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0~0~0~1 |
| + | \\[4pt] |
| + | 0~0~1~0 |
| + | \\[4pt] |
| + | 0~1~0~0 |
| + | \\[4pt] |
| + | 1~0~0~0 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \text{neither}~ p ~\text{nor}~ q |
| + | \\[4pt] |
| + | q ~\text{without}~ p |
| + | \\[4pt] |
| + | p ~\text{without}~ q |
| + | \\[4pt] |
| + | p ~\text{and}~ q |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \lnot p \land \lnot q |
| + | \\[4pt] |
| + | \lnot p \land q |
| + | \\[4pt] |
| + | p \land \lnot q |
| + | \\[4pt] |
| + | p \land q |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_3 |
| + | \\[4pt] |
| + | f_{12} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{0011} |
| + | \\[4pt] |
| + | f_{1100} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0~0~1~1 |
| + | \\[4pt] |
| + | 1~1~0~0 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \text{not}~ p |
| + | \\[4pt] |
| + | p |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \lnot p |
| + | \\[4pt] |
| + | p |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_6 |
| + | \\[4pt] |
| + | f_9 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{0110} |
| + | \\[4pt] |
| + | f_{1001} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0~1~1~0 |
| + | \\[4pt] |
| + | 1~0~0~1 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | p ~\text{not equal to}~ q |
| + | \\[4pt] |
| + | p ~\text{equal to}~ q |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | p \ne q |
| + | \\[4pt] |
| + | p = q |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_5 |
| + | \\[4pt] |
| + | f_{10} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{0101} |
| + | \\[4pt] |
| + | f_{1010} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0~1~0~1 |
| + | \\[4pt] |
| + | 1~0~1~0 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \text{not}~ q |
| + | \\[4pt] |
| + | q |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \lnot q |
| + | \\[4pt] |
| + | q |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_7 |
| + | \\[4pt] |
| + | f_{11} |
| + | \\[4pt] |
| + | f_{13} |
| + | \\[4pt] |
| + | f_{14} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{0111} |
| + | \\[4pt] |
| + | f_{1011} |
| + | \\[4pt] |
| + | f_{1101} |
| + | \\[4pt] |
| + | f_{1110} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0~1~1~1 |
| + | \\[4pt] |
| + | 1~0~1~1 |
| + | \\[4pt] |
| + | 1~1~0~1 |
| + | \\[4pt] |
| + | 1~1~1~0 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p~~q)~ |
| + | \\[4pt] |
| + | ~(p~(q)) |
| + | \\[4pt] |
| + | ((p)~q)~ |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \text{not both}~ p ~\text{and}~ q |
| + | \\[4pt] |
| + | \text{not}~ p ~\text{without}~ q |
| + | \\[4pt] |
| + | \text{not}~ q ~\text{without}~ p |
| + | \\[4pt] |
| + | p ~\text{or}~ q |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \lnot p \lor \lnot q |
| + | \\[4pt] |
| + | p \Rightarrow q |
| + | \\[4pt] |
| + | p \Leftarrow q |
| + | \\[4pt] |
| + | p \lor q |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | <math>f_{1111}\!</math> |
| + | | <math>1~1~1~1</math> |
| + | | <math>((~))</math> |
| + | | <math>\text{true}\!</math> |
| + | | <math>1\!</math> |
| + | |} |
| + | |
| + | <br> |
| | | |
| ==Note 8== | | ==Note 8== |