Line 862:
Line 862:
==Note 7==
==Note 7==
−
<pre>
+
To broaden our experience with simple examples, let us examine the sixteen functions of concrete type <math>P \times Q \to \mathbb{B}</math> and abstract type <math>\mathbb{B} \times \mathbb{B} \to \mathbb{B}.</math> A few Tables are set here that detail the actions of <math>\operatorname{E}</math> and <math>\operatorname{D}</math> on each of these functions, allowing us to view the results in several different ways.
−
To broaden our experience with simple examples, let us
−
now contemplate the sixteen functions of concrete type
−
!P! x !Q! -> B and abstract type B x B -> B. For ease
−
of future reference, I will set here a few tables that
−
specify the actions of E and D on the 16 functions and
−
allow us to view the results in several different ways.
−
By way of initial orientation, Table 7 lists equivalent expressions
+
Tables A1 and A2 show two ways of arranging the 16 boolean functions on two variables, giving equivalent expressions for each function in several different systems of notation.
−
for the sixteen functions in several different formalisms, indexing
−
systems, or languages for the propositional calculus, also known as
−
"zeroth order logic" (ZOL).
−
Table 7. Propositional Forms on Two Variables
+
<br>
−
o---------o---------o---------o----------o------------------o----------o
+
−
| L_1 | L_2 | L_3 | L_4 | L_5 | L_6 |
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%"
−
| | | | | | |
+
|+ <math>\text{Table A1.}~~\text{Propositional Forms on Two Variables}</math>
−
| Decimal | Binary | Vector | Cactus | English | Ordinary |
+
|- style="background:#f0f0ff"
−
o---------o---------o---------o----------o------------------o----------o
+
| width="15%" |
−
| | p : 1 1 0 0 | | | |
+
<p><math>\mathcal{L}_1</math></p>
−
| | q : 1 0 1 0 | | | |
+
<p><math>\text{Decimal}</math></p>
−
o---------o---------o---------o----------o------------------o----------o
+
| width="15%" |
−
| | | | | | |
+
<p><math>\mathcal{L}_2</math></p>
−
| f_0 | f_0000 | 0 0 0 0 | () | false | 0 |
+
<p><math>\text{Binary}</math></p>
−
| | | | | | |
+
| width="15%" |
−
| f_1 | f_0001 | 0 0 0 1 | (p)(q) | neither p nor q | ~p & ~q |
+
<p><math>\mathcal{L}_3</math></p>
−
| | | | | | |
+
<p><math>\text{Vector}</math></p>
−
| f_2 | f_0010 | 0 0 1 0 | (p) q | q and not p | ~p & q |
+
| width="15%" |
−
| | | | | | |
+
<p><math>\mathcal{L}_4</math></p>
−
| f_3 | f_0011 | 0 0 1 1 | (p) | not p | ~p |
+
<p><math>\text{Cactus}</math></p>
−
| | | | | | |
+
| width="25%" |
−
| f_4 | f_0100 | 0 1 0 0 | p (q) | p and not q | p & ~q |
+
<p><math>\mathcal{L}_5</math></p>
−
| | | | | | |
+
<p><math>\text{English}</math></p>
−
| f_5 | f_0101 | 0 1 0 1 | (q) | not q | ~q |
+
| width="15%" |
−
| | | | | | |
+
<p><math>\mathcal{L}_6</math></p>
−
| f_6 | f_0110 | 0 1 1 0 | (p, q) | p not equal to q | p + q |
+
<p><math>\text{Ordinary}</math></p>
−
| | | | | | |
+
|- style="background:#f0f0ff"
−
| f_7 | f_0111 | 0 1 1 1 | (p q) | not both p and q | ~p v ~q |
+
|
−
| | | | | | |
+
| align="right" | <math>p\colon\!</math>
−
| f_8 | f_1000 | 1 0 0 0 | p q | p and q | p & q |
+
| <math>1~1~0~0\!</math>
−
| | | | | | |
+
|
−
| f_9 | f_1001 | 1 0 0 1 | ((p, q)) | p equal to q | p = q |
+
|
−
| | | | | | |
+
|
−
| f_10 | f_1010 | 1 0 1 0 | q | q | q |
+
|- style="background:#f0f0ff"
−
| | | | | | |
+
|
−
| f_11 | f_1011 | 1 0 1 1 | (p (q)) | not p without q | p => q |
+
| align="right" | <math>q\colon\!</math>
−
| | | | | | |
+
| <math>1~0~1~0\!</math>
−
| f_12 | f_1100 | 1 1 0 0 | p | p | p |
+
|
−
| | | | | | |
+
|
−
| f_13 | f_1101 | 1 1 0 1 | ((p) q) | not q without p | p <= q |
+
|
−
| | | | | | |
+
|-
−
| f_14 | f_1110 | 1 1 1 0 | ((p)(q)) | p or q | p v q |
+
|
−
| | | | | | |
+
<math>\begin{matrix}
−
| f_15 | f_1111 | 1 1 1 1 | (()) | true | 1 |
+
f_0
−
| | | | | | |
+
\\[4pt]
−
o---------o---------o---------o----------o------------------o----------o
+
f_1
−
</pre>
+
\\[4pt]
+
f_2
+
\\[4pt]
+
f_3
+
\\[4pt]
+
f_4
+
\\[4pt]
+
f_5
+
\\[4pt]
+
f_6
+
\\[4pt]
+
f_7
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
f_{0000}
+
\\[4pt]
+
f_{0001}
+
\\[4pt]
+
f_{0010}
+
\\[4pt]
+
f_{0011}
+
\\[4pt]
+
f_{0100}
+
\\[4pt]
+
f_{0101}
+
\\[4pt]
+
f_{0110}
+
\\[4pt]
+
f_{0111}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
0~0~0~0
+
\\[4pt]
+
0~0~0~1
+
\\[4pt]
+
0~0~1~0
+
\\[4pt]
+
0~0~1~1
+
\\[4pt]
+
0~1~0~0
+
\\[4pt]
+
0~1~0~1
+
\\[4pt]
+
0~1~1~0
+
\\[4pt]
+
0~1~1~1
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(~)
+
\\[4pt]
+
(p)(q)
+
\\[4pt]
+
(p)~q~
+
\\[4pt]
+
(p)~~~
+
\\[4pt]
+
~p~(q)
+
\\[4pt]
+
~~~(q)
+
\\[4pt]
+
(p,~q)
+
\\[4pt]
+
(p~~q)
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\text{false}
+
\\[4pt]
+
\text{neither}~ p ~\text{nor}~ q
+
\\[4pt]
+
q ~\text{without}~ p
+
\\[4pt]
+
\text{not}~ p
+
\\[4pt]
+
p ~\text{without}~ q
+
\\[4pt]
+
\text{not}~ q
+
\\[4pt]
+
p ~\text{not equal to}~ q
+
\\[4pt]
+
\text{not both}~ p ~\text{and}~ q
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
0
+
\\[4pt]
+
\lnot p \land \lnot q
+
\\[4pt]
+
\lnot p \land q
+
\\[4pt]
+
\lnot p
+
\\[4pt]
+
p \land \lnot q
+
\\[4pt]
+
\lnot q
+
\\[4pt]
+
p \ne q
+
\\[4pt]
+
\lnot p \lor \lnot q
+
\end{matrix}</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_8
+
\\[4pt]
+
f_9
+
\\[4pt]
+
f_{10}
+
\\[4pt]
+
f_{11}
+
\\[4pt]
+
f_{12}
+
\\[4pt]
+
f_{13}
+
\\[4pt]
+
f_{14}
+
\\[4pt]
+
f_{15}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
f_{1000}
+
\\[4pt]
+
f_{1001}
+
\\[4pt]
+
f_{1010}
+
\\[4pt]
+
f_{1011}
+
\\[4pt]
+
f_{1100}
+
\\[4pt]
+
f_{1101}
+
\\[4pt]
+
f_{1110}
+
\\[4pt]
+
f_{1111}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
1~0~0~0
+
\\[4pt]
+
1~0~0~1
+
\\[4pt]
+
1~0~1~0
+
\\[4pt]
+
1~0~1~1
+
\\[4pt]
+
1~1~0~0
+
\\[4pt]
+
1~1~0~1
+
\\[4pt]
+
1~1~1~0
+
\\[4pt]
+
1~1~1~1
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
~~p~~q~~
+
\\[4pt]
+
((p,~q))
+
\\[4pt]
+
~~~~~q~~
+
\\[4pt]
+
~(p~(q))
+
\\[4pt]
+
~~p~~~~~
+
\\[4pt]
+
((p)~q)~
+
\\[4pt]
+
((p)(q))
+
\\[4pt]
+
((~))
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
p ~\text{and}~ q
+
\\[4pt]
+
p ~\text{equal to}~ q
+
\\[4pt]
+
q
+
\\[4pt]
+
\text{not}~ p ~\text{without}~ q
+
\\[4pt]
+
p
+
\\[4pt]
+
\text{not}~ q ~\text{without}~ p
+
\\[4pt]
+
p ~\text{or}~ q
+
\\[4pt]
+
\text{true}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
p \land q
+
\\[4pt]
+
p = q
+
\\[4pt]
+
q
+
\\[4pt]
+
p \Rightarrow q
+
\\[4pt]
+
p
+
\\[4pt]
+
p \Leftarrow q
+
\\[4pt]
+
p \lor q
+
\\[4pt]
+
1
+
\end{matrix}</math>
+
|}
+
+
<br>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%"
+
|+ <math>\text{Table A2.}~~\text{Propositional Forms on Two Variables}</math>
+
|- style="background:#f0f0ff"
+
| width="15%" |
+
<p><math>\mathcal{L}_1</math></p>
+
<p><math>\text{Decimal}</math></p>
+
| width="15%" |
+
<p><math>\mathcal{L}_2</math></p>
+
<p><math>\text{Binary}</math></p>
+
| width="15%" |
+
<p><math>\mathcal{L}_3</math></p>
+
<p><math>\text{Vector}</math></p>
+
| width="15%" |
+
<p><math>\mathcal{L}_4</math></p>
+
<p><math>\text{Cactus}</math></p>
+
| width="25%" |
+
<p><math>\mathcal{L}_5</math></p>
+
<p><math>\text{English}</math></p>
+
| width="15%" |
+
<p><math>\mathcal{L}_6</math></p>
+
<p><math>\text{Ordinary}</math></p>
+
|- style="background:#f0f0ff"
+
|
+
| align="right" | <math>p\colon\!</math>
+
| <math>1~1~0~0\!</math>
+
|
+
|
+
|
+
|- style="background:#f0f0ff"
+
|
+
| align="right" | <math>q\colon\!</math>
+
| <math>1~0~1~0\!</math>
+
|
+
|
+
|
+
|-
+
| <math>f_0\!</math>
+
| <math>f_{0000}\!</math>
+
| <math>0~0~0~0</math>
+
| <math>(~)</math>
+
| <math>\text{false}\!</math>
+
| <math>0\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_1
+
\\[4pt]
+
f_2
+
\\[4pt]
+
f_4
+
\\[4pt]
+
f_8
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
f_{0001}
+
\\[4pt]
+
f_{0010}
+
\\[4pt]
+
f_{0100}
+
\\[4pt]
+
f_{1000}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
0~0~0~1
+
\\[4pt]
+
0~0~1~0
+
\\[4pt]
+
0~1~0~0
+
\\[4pt]
+
1~0~0~0
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(p)(q)
+
\\[4pt]
+
(p)~q~
+
\\[4pt]
+
~p~(q)
+
\\[4pt]
+
~p~~q~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\text{neither}~ p ~\text{nor}~ q
+
\\[4pt]
+
q ~\text{without}~ p
+
\\[4pt]
+
p ~\text{without}~ q
+
\\[4pt]
+
p ~\text{and}~ q
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\lnot p \land \lnot q
+
\\[4pt]
+
\lnot p \land q
+
\\[4pt]
+
p \land \lnot q
+
\\[4pt]
+
p \land q
+
\end{matrix}</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_3
+
\\[4pt]
+
f_{12}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
f_{0011}
+
\\[4pt]
+
f_{1100}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
0~0~1~1
+
\\[4pt]
+
1~1~0~0
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(p)
+
\\[4pt]
+
~p~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\text{not}~ p
+
\\[4pt]
+
p
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\lnot p
+
\\[4pt]
+
p
+
\end{matrix}</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_6
+
\\[4pt]
+
f_9
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
f_{0110}
+
\\[4pt]
+
f_{1001}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
0~1~1~0
+
\\[4pt]
+
1~0~0~1
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
~(p,~q)~
+
\\[4pt]
+
((p,~q))
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
p ~\text{not equal to}~ q
+
\\[4pt]
+
p ~\text{equal to}~ q
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
p \ne q
+
\\[4pt]
+
p = q
+
\end{matrix}</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_5
+
\\[4pt]
+
f_{10}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
f_{0101}
+
\\[4pt]
+
f_{1010}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
0~1~0~1
+
\\[4pt]
+
1~0~1~0
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(q)
+
\\[4pt]
+
~q~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\text{not}~ q
+
\\[4pt]
+
q
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\lnot q
+
\\[4pt]
+
q
+
\end{matrix}</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_7
+
\\[4pt]
+
f_{11}
+
\\[4pt]
+
f_{13}
+
\\[4pt]
+
f_{14}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
f_{0111}
+
\\[4pt]
+
f_{1011}
+
\\[4pt]
+
f_{1101}
+
\\[4pt]
+
f_{1110}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
0~1~1~1
+
\\[4pt]
+
1~0~1~1
+
\\[4pt]
+
1~1~0~1
+
\\[4pt]
+
1~1~1~0
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
~(p~~q)~
+
\\[4pt]
+
~(p~(q))
+
\\[4pt]
+
((p)~q)~
+
\\[4pt]
+
((p)(q))
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\text{not both}~ p ~\text{and}~ q
+
\\[4pt]
+
\text{not}~ p ~\text{without}~ q
+
\\[4pt]
+
\text{not}~ q ~\text{without}~ p
+
\\[4pt]
+
p ~\text{or}~ q
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\lnot p \lor \lnot q
+
\\[4pt]
+
p \Rightarrow q
+
\\[4pt]
+
p \Leftarrow q
+
\\[4pt]
+
p \lor q
+
\end{matrix}</math>
+
|-
+
| <math>f_{15}\!</math>
+
| <math>f_{1111}\!</math>
+
| <math>1~1~1~1</math>
+
| <math>((~))</math>
+
| <math>\text{true}\!</math>
+
| <math>1\!</math>
+
|}
+
+
<br>
==Note 8==
==Note 8==