Line 1,957: |
Line 1,957: |
| ==Note 9== | | ==Note 9== |
| | | |
− | <pre> | + | <br> |
− | Table 9-a. Ef Expanded Over Differential Features
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | | f | T_11 f | T_10 f | T_01 f | T_00 f |
| |
− | | | | | | | |
| |
− | | | | Ef| dp dq | Ef| dp(dq) | Ef| (dp)dq | Ef|(dp)(dq)|
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_0 | () | () | () | () | () |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_1 | (p)(q) | p q | p (q) | (p) q | (p)(q) |
| |
− | | | | | | | |
| |
− | | f_2 | (p) q | p (q) | p q | (p)(q) | (p) q |
| |
− | | | | | | | |
| |
− | | f_4 | p (q) | (p) q | (p)(q) | p q | p (q) |
| |
− | | | | | | | |
| |
− | | f_8 | p q | (p)(q) | (p) q | p (q) | p q |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_3 | (p) | p | p | (p) | (p) |
| |
− | | | | | | | |
| |
− | | f_12 | p | (p) | (p) | p | p |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_6 | (p, q) | (p, q) | ((p, q)) | ((p, q)) | (p, q) |
| |
− | | | | | | | |
| |
− | | f_9 | ((p, q)) | ((p, q)) | (p, q) | (p, q) | ((p, q)) |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_5 | (q) | q | (q) | q | (q) |
| |
− | | | | | | | |
| |
− | | f_10 | q | (q) | q | (q) | q |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_7 | (p q) | ((p)(q)) | ((p) q) | (p (q)) | (p q) |
| |
− | | | | | | | |
| |
− | | f_11 | (p (q)) | ((p) q) | ((p)(q)) | (p q) | (p (q)) |
| |
− | | | | | | | |
| |
− | | f_13 | ((p) q) | (p (q)) | (p q) | ((p)(q)) | ((p) q) |
| |
− | | | | | | | |
| |
− | | f_14 | ((p)(q)) | (p q) | (p (q)) | ((p) q) | ((p)(q)) |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | | |
| |
− | | f_15 | (()) | (()) | (()) | (()) | (()) |
| |
− | | | | | | | |
| |
− | o------o------------o------------o------------o------------o------------o
| |
− | | | | | | |
| |
− | | Fiped Point Total | 4 | 4 | 4 | 16 |
| |
− | | | | | | |
| |
− | o-------------------o------------o------------o------------o------------o
| |
| | | |
− | Table 9-b. Df Expanded Over Differential Features | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" |
− | o------o------------o------------o------------o------------o------------o
| + | |+ <math>\text{Table A5.}~~\operatorname{E}f ~\text{Expanded Over Ordinary Features}~ \{ p, q \}</math> |
− | | | | | | | | | + | |- style="background:#f0f0ff" |
− | | | f | Df| dp dq | Df| dp(dq) | Df| (dp)dq | Df|(dp)(dq)|
| + | | width="10%" | |
− | | | | | | | | | + | | width="18%" | <math>f\!</math> |
− | o------o------------o------------o------------o------------o------------o
| + | | width="18%" | <math>\operatorname{E}f|_{xy}</math> |
− | | | | | | | |
| + | | width="18%" | <math>\operatorname{E}f|_{p(q)}</math> |
− | | f_0 | () | () | () | () | () |
| + | | width="18%" | <math>\operatorname{E}f|_{(p)q}</math> |
− | | | | | | | |
| + | | width="18%" | <math>\operatorname{E}f|_{(p)(q)}</math> |
− | o------o------------o------------o------------o------------o------------o
| + | |- |
− | | | | | | | | | + | | <math>f_0\!</math> |
− | | f_1 | (p)(q) | ((p, q)) | (q) | (p) | () |
| + | | <math>(~)</math> |
− | | | | | | | | | + | | <math>(~)</math> |
− | | f_2 | (p) q | (p, q) | q | (p) | () |
| + | | <math>(~)</math> |
− | | | | | | | |
| + | | <math>(~)</math> |
− | | f_4 | p (q) | (p, q) | (q) | p | () |
| + | | <math>(~)</math> |
− | | | | | | | | | + | |- |
− | | f_8 | p q | ((p, q)) | q | p | () |
| + | | |
− | | | | | | | | | + | <math>\begin{matrix} |
− | o------o------------o------------o------------o------------o------------o
| + | f_1 |
− | | | | | | | |
| + | \\[4pt] |
− | | f_3 | (p) | (()) | (()) | () | () |
| + | f_2 |
− | | | | | | | |
| + | \\[4pt] |
− | | f_12 | p | (()) | (()) | () | () |
| + | f_4 |
− | | | | | | | |
| + | \\[4pt] |
− | o------o------------o------------o------------o------------o------------o
| + | f_8 |
− | | | | | | | |
| + | \end{matrix}</math> |
− | | f_6 | (p, q) | () | (()) | (()) | () |
| + | | |
− | | | | | | | |
| + | <math>\begin{matrix} |
− | | f_9 | ((p, q)) | () | (()) | (()) | () |
| + | (p)(q) |
− | | | | | | | | | + | \\[4pt] |
− | o------o------------o------------o------------o------------o------------o
| + | (p)~q~ |
− | | | | | | | | | + | \\[4pt] |
− | | f_5 | (q) | (()) | () | (()) | () |
| + | ~p~(q) |
− | | | | | | | | | + | \\[4pt] |
− | | f_10 | q | (()) | () | (()) | () | | + | ~p~~q~ |
− | | | | | | | | | + | \end{matrix}</math> |
− | o------o------------o------------o------------o------------o------------o
| + | | |
− | | | | | | | |
| + | <math>\begin{matrix} |
− | | f_7 | (p q) | ((p, q)) | q | p | () |
| + | ~\operatorname{d}p~~\operatorname{d}q~ |
− | | | | | | | | | + | \\[4pt] |
− | | f_11 | (p (q)) | (p, q) | (q) | p | () |
| + | ~\operatorname{d}p~(\operatorname{d}q) |
− | | | | | | | |
| + | \\[4pt] |
− | | f_13 | ((p) q) | (p, q) | q | (p) | () |
| + | (\operatorname{d}p)~\operatorname{d}q~ |
− | | | | | | | | | + | \\[4pt] |
− | | f_14 | ((p)(q)) | ((p, q)) | (q) | (p) | () | | + | (\operatorname{d}p)(\operatorname{d}q) |
− | | | | | | | | | + | \end{matrix}</math> |
− | o------o------------o------------o------------o------------o------------o
| + | | |
− | | | | | | | | | + | <math>\begin{matrix} |
− | | f_15 | (()) | () | () | () | () |
| + | ~\operatorname{d}p~(\operatorname{d}q) |
− | | | | | | | | | + | \\[4pt] |
− | o------o------------o------------o------------o------------o------------o
| + | ~\operatorname{d}p~~\operatorname{d}q~ |
− | </pre> | + | \\[4pt] |
| + | (\operatorname{d}p)(\operatorname{d}q) |
| + | \\[4pt] |
| + | (\operatorname{d}p)~\operatorname{d}q~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\operatorname{d}p)~\operatorname{d}q~ |
| + | \\[4pt] |
| + | (\operatorname{d}p)(\operatorname{d}q) |
| + | \\[4pt] |
| + | ~\operatorname{d}p~~\operatorname{d}q~ |
| + | \\[4pt] |
| + | ~\operatorname{d}p~(\operatorname{d}q) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\operatorname{d}p)(\operatorname{d}q) |
| + | \\[4pt] |
| + | (\operatorname{d}p)~\operatorname{d}q~ |
| + | \\[4pt] |
| + | ~\operatorname{d}p~(\operatorname{d}q) |
| + | \\[4pt] |
| + | ~\operatorname{d}p~~\operatorname{d}q~ |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_3 |
| + | \\[4pt] |
| + | f_{12} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~\operatorname{d}p~ |
| + | \\[4pt] |
| + | (\operatorname{d}p) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~\operatorname{d}p~ |
| + | \\[4pt] |
| + | (\operatorname{d}p) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\operatorname{d}p) |
| + | \\[4pt] |
| + | ~\operatorname{d}p~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\operatorname{d}p) |
| + | \\[4pt] |
| + | ~\operatorname{d}p~ |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_6 |
| + | \\[4pt] |
| + | f_9 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(\operatorname{d}p,~\operatorname{d}q)~ |
| + | \\[4pt] |
| + | ((\operatorname{d}p,~\operatorname{d}q)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((\operatorname{d}p,~\operatorname{d}q)) |
| + | \\[4pt] |
| + | ~(\operatorname{d}p,~\operatorname{d}q)~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((\operatorname{d}p,~\operatorname{d}q)) |
| + | \\[4pt] |
| + | ~(\operatorname{d}p,~\operatorname{d}q)~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(\operatorname{d}p,~\operatorname{d}q)~ |
| + | \\[4pt] |
| + | ((\operatorname{d}p,~\operatorname{d}q)) |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_5 |
| + | \\[4pt] |
| + | f_{10} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~\operatorname{d}q~ |
| + | \\[4pt] |
| + | (\operatorname{d}q) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\operatorname{d}q) |
| + | \\[4pt] |
| + | ~\operatorname{d}q~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~\operatorname{d}q~ |
| + | \\[4pt] |
| + | (\operatorname{d}q) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\operatorname{d}q) |
| + | \\[4pt] |
| + | ~\operatorname{d}q~ |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_7 |
| + | \\[4pt] |
| + | f_{11} |
| + | \\[4pt] |
| + | f_{13} |
| + | \\[4pt] |
| + | f_{14} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~p~~q~) |
| + | \\[4pt] |
| + | (~p~(q)) |
| + | \\[4pt] |
| + | ((p)~q~) |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((\operatorname{d}p)(\operatorname{d}q)) |
| + | \\[4pt] |
| + | ((\operatorname{d}p)~\operatorname{d}q~) |
| + | \\[4pt] |
| + | (~\operatorname{d}p~(\operatorname{d}q)) |
| + | \\[4pt] |
| + | (~\operatorname{d}p~~\operatorname{d}q~) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((\operatorname{d}p)~\operatorname{d}q~) |
| + | \\[4pt] |
| + | ((\operatorname{d}p)(\operatorname{d}q)) |
| + | \\[4pt] |
| + | (~\operatorname{d}p~~\operatorname{d}q~) |
| + | \\[4pt] |
| + | (~\operatorname{d}p~(\operatorname{d}q)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~\operatorname{d}p~(\operatorname{d}q)) |
| + | \\[4pt] |
| + | (~\operatorname{d}p~~\operatorname{d}q~) |
| + | \\[4pt] |
| + | ((\operatorname{d}p)(\operatorname{d}q)) |
| + | \\[4pt] |
| + | ((\operatorname{d}p)~\operatorname{d}q~) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~\operatorname{d}p~~\operatorname{d}q~) |
| + | \\[4pt] |
| + | (~\operatorname{d}p~(\operatorname{d}q)) |
| + | \\[4pt] |
| + | ((\operatorname{d}p)~\operatorname{d}q~) |
| + | \\[4pt] |
| + | ((\operatorname{d}p)(\operatorname{d}q)) |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | <math>((~))</math> |
| + | | <math>((~))</math> |
| + | | <math>((~))</math> |
| + | | <math>((~))</math> |
| + | | <math>((~))</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" |
| + | |+ <math>\text{Table A6.}~~\operatorname{D}f ~\text{Expanded Over Ordinary Features}~ \{ p, q \}</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="10%" | |
| + | | width="18%" | <math>f\!</math> |
| + | | width="18%" | <math>\operatorname{D}f|_{xy}</math> |
| + | | width="18%" | <math>\operatorname{D}f|_{p(q)}</math> |
| + | | width="18%" | <math>\operatorname{D}f|_{(p)q}</math> |
| + | | width="18%" | <math>\operatorname{D}f|_{(p)(q)}</math> |
| + | |- |
| + | | <math>f_0\!</math> |
| + | | <math>(~)</math> |
| + | | <math>(~)</math> |
| + | | <math>(~)</math> |
| + | | <math>(~)</math> |
| + | | <math>(~)</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_1 |
| + | \\[4pt] |
| + | f_2 |
| + | \\[4pt] |
| + | f_4 |
| + | \\[4pt] |
| + | f_8 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~~\operatorname{d}p~~\operatorname{d}q~~ |
| + | \\[4pt] |
| + | ~~\operatorname{d}p~(\operatorname{d}q)~ |
| + | \\[4pt] |
| + | ~(\operatorname{d}p)~\operatorname{d}q~~ |
| + | \\[4pt] |
| + | ((\operatorname{d}p)(\operatorname{d}q)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~~\operatorname{d}p~(\operatorname{d}q)~ |
| + | \\[4pt] |
| + | ~~\operatorname{d}p~~\operatorname{d}q~~ |
| + | \\[4pt] |
| + | ((\operatorname{d}p)(\operatorname{d}q)) |
| + | \\[4pt] |
| + | ~(\operatorname{d}p)~\operatorname{d}q~~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(\operatorname{d}p)~\operatorname{d}q~~ |
| + | \\[4pt] |
| + | ((\operatorname{d}p)(\operatorname{d}q)) |
| + | \\[4pt] |
| + | ~~\operatorname{d}p~~\operatorname{d}q~~ |
| + | \\[4pt] |
| + | ~~\operatorname{d}p~(\operatorname{d}q)~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((\operatorname{d}p)(\operatorname{d}q)) |
| + | \\[4pt] |
| + | ~(\operatorname{d}p)~\operatorname{d}q~~ |
| + | \\[4pt] |
| + | ~~\operatorname{d}p~(\operatorname{d}q)~ |
| + | \\[4pt] |
| + | ~~\operatorname{d}p~~\operatorname{d}q~~ |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_3 |
| + | \\[4pt] |
| + | f_{12} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \operatorname{d}p |
| + | \\[4pt] |
| + | \operatorname{d}p |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \operatorname{d}p |
| + | \\[4pt] |
| + | \operatorname{d}p |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \operatorname{d}p |
| + | \\[4pt] |
| + | \operatorname{d}p |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \operatorname{d}p |
| + | \\[4pt] |
| + | \operatorname{d}p |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_6 |
| + | \\[4pt] |
| + | f_9 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\operatorname{d}p,~\operatorname{d}q) |
| + | \\[4pt] |
| + | (\operatorname{d}p,~\operatorname{d}q) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\operatorname{d}p,~\operatorname{d}q) |
| + | \\[4pt] |
| + | (\operatorname{d}p,~\operatorname{d}q) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\operatorname{d}p,~\operatorname{d}q) |
| + | \\[4pt] |
| + | (\operatorname{d}p,~\operatorname{d}q) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\operatorname{d}p,~\operatorname{d}q) |
| + | \\[4pt] |
| + | (\operatorname{d}p,~\operatorname{d}q) |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_5 |
| + | \\[4pt] |
| + | f_{10} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \operatorname{d}q |
| + | \\[4pt] |
| + | \operatorname{d}q |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \operatorname{d}q |
| + | \\[4pt] |
| + | \operatorname{d}q |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \operatorname{d}q |
| + | \\[4pt] |
| + | \operatorname{d}q |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \operatorname{d}q |
| + | \\[4pt] |
| + | \operatorname{d}q |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_7 |
| + | \\[4pt] |
| + | f_{11} |
| + | \\[4pt] |
| + | f_{13} |
| + | \\[4pt] |
| + | f_{14} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~p~~q~) |
| + | \\[4pt] |
| + | (~p~(q)) |
| + | \\[4pt] |
| + | ((p)~q~) |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((\operatorname{d}p)(\operatorname{d}q)) |
| + | \\[4pt] |
| + | ~(\operatorname{d}p)~\operatorname{d}q~~ |
| + | \\[4pt] |
| + | ~~\operatorname{d}p~(\operatorname{d}q)~ |
| + | \\[4pt] |
| + | ~~\operatorname{d}p~~\operatorname{d}q~~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(\operatorname{d}p)~\operatorname{d}q~~ |
| + | \\[4pt] |
| + | ((\operatorname{d}p)(\operatorname{d}q)) |
| + | \\[4pt] |
| + | ~~\operatorname{d}p~~\operatorname{d}q~~ |
| + | \\[4pt] |
| + | ~~\operatorname{d}p~(\operatorname{d}q)~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~~\operatorname{d}p~(\operatorname{d}q)~ |
| + | \\[4pt] |
| + | ~~\operatorname{d}p~~\operatorname{d}q~~ |
| + | \\[4pt] |
| + | ((\operatorname{d}p)(\operatorname{d}q)) |
| + | \\[4pt] |
| + | ~(\operatorname{d}p)~\operatorname{d}q~~ |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~~\operatorname{d}p~~\operatorname{d}q~~ |
| + | \\[4pt] |
| + | ~~\operatorname{d}p~(\operatorname{d}q)~ |
| + | \\[4pt] |
| + | ~(\operatorname{d}p)~\operatorname{d}q~~ |
| + | \\[4pt] |
| + | ((\operatorname{d}p)(\operatorname{d}q)) |
| + | \end{matrix}</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | <math>((~))</math> |
| + | | <math>((~))</math> |
| + | | <math>((~))</math> |
| + | | <math>((~))</math> |
| + | | <math>((~))</math> |
| + | |} |
| + | |
| + | <br> |
| | | |
| ==Note 10== | | ==Note 10== |