Line 1,957:
Line 1,957:
==Note 9==
==Note 9==
−
<pre>
+
<br>
−
Table 9-a. Ef Expanded Over Differential Features
−
o------o------------o------------o------------o------------o------------o
−
| | | | | | |
−
| | f | T_11 f | T_10 f | T_01 f | T_00 f |
−
| | | | | | |
−
| | | Ef| dp dq | Ef| dp(dq) | Ef| (dp)dq | Ef|(dp)(dq)|
−
| | | | | | |
−
o------o------------o------------o------------o------------o------------o
−
| | | | | | |
−
| f_0 | () | () | () | () | () |
−
| | | | | | |
−
o------o------------o------------o------------o------------o------------o
−
| | | | | | |
−
| f_1 | (p)(q) | p q | p (q) | (p) q | (p)(q) |
−
| | | | | | |
−
| f_2 | (p) q | p (q) | p q | (p)(q) | (p) q |
−
| | | | | | |
−
| f_4 | p (q) | (p) q | (p)(q) | p q | p (q) |
−
| | | | | | |
−
| f_8 | p q | (p)(q) | (p) q | p (q) | p q |
−
| | | | | | |
−
o------o------------o------------o------------o------------o------------o
−
| | | | | | |
−
| f_3 | (p) | p | p | (p) | (p) |
−
| | | | | | |
−
| f_12 | p | (p) | (p) | p | p |
−
| | | | | | |
−
o------o------------o------------o------------o------------o------------o
−
| | | | | | |
−
| f_6 | (p, q) | (p, q) | ((p, q)) | ((p, q)) | (p, q) |
−
| | | | | | |
−
| f_9 | ((p, q)) | ((p, q)) | (p, q) | (p, q) | ((p, q)) |
−
| | | | | | |
−
o------o------------o------------o------------o------------o------------o
−
| | | | | | |
−
| f_5 | (q) | q | (q) | q | (q) |
−
| | | | | | |
−
| f_10 | q | (q) | q | (q) | q |
−
| | | | | | |
−
o------o------------o------------o------------o------------o------------o
−
| | | | | | |
−
| f_7 | (p q) | ((p)(q)) | ((p) q) | (p (q)) | (p q) |
−
| | | | | | |
−
| f_11 | (p (q)) | ((p) q) | ((p)(q)) | (p q) | (p (q)) |
−
| | | | | | |
−
| f_13 | ((p) q) | (p (q)) | (p q) | ((p)(q)) | ((p) q) |
−
| | | | | | |
−
| f_14 | ((p)(q)) | (p q) | (p (q)) | ((p) q) | ((p)(q)) |
−
| | | | | | |
−
o------o------------o------------o------------o------------o------------o
−
| | | | | | |
−
| f_15 | (()) | (()) | (()) | (()) | (()) |
−
| | | | | | |
−
o------o------------o------------o------------o------------o------------o
−
| | | | | |
−
| Fiped Point Total | 4 | 4 | 4 | 16 |
−
| | | | | |
−
o-------------------o------------o------------o------------o------------o
−
Table 9-b. Df Expanded Over Differential Features
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%"
−
o------o------------o------------o------------o------------o------------o
+
|+ <math>\text{Table A5.}~~\operatorname{E}f ~\text{Expanded Over Ordinary Features}~ \{ p, q \}</math>
−
| | | | | | |
+
|- style="background:#f0f0ff"
−
| | f | Df| dp dq | Df| dp(dq) | Df| (dp)dq | Df|(dp)(dq)|
+
| width="10%" |
−
| | | | | | |
+
| width="18%" | <math>f\!</math>
−
o------o------------o------------o------------o------------o------------o
+
| width="18%" | <math>\operatorname{E}f|_{xy}</math>
−
| | | | | | |
+
| width="18%" | <math>\operatorname{E}f|_{p(q)}</math>
−
| f_0 | () | () | () | () | () |
+
| width="18%" | <math>\operatorname{E}f|_{(p)q}</math>
−
| | | | | | |
+
| width="18%" | <math>\operatorname{E}f|_{(p)(q)}</math>
−
o------o------------o------------o------------o------------o------------o
+
|-
−
| | | | | | |
+
| <math>f_0\!</math>
−
| f_1 | (p)(q) | ((p, q)) | (q) | (p) | () |
+
| <math>(~)</math>
−
| | | | | | |
+
| <math>(~)</math>
−
| f_2 | (p) q | (p, q) | q | (p) | () |
+
| <math>(~)</math>
−
| | | | | | |
+
| <math>(~)</math>
−
| f_4 | p (q) | (p, q) | (q) | p | () |
+
| <math>(~)</math>
−
| | | | | | |
+
|-
−
| f_8 | p q | ((p, q)) | q | p | () |
+
|
−
| | | | | | |
+
<math>\begin{matrix}
−
o------o------------o------------o------------o------------o------------o
+
f_1
−
| | | | | | |
+
\\[4pt]
−
| f_3 | (p) | (()) | (()) | () | () |
+
f_2
−
| | | | | | |
+
\\[4pt]
−
| f_12 | p | (()) | (()) | () | () |
+
f_4
−
| | | | | | |
+
\\[4pt]
−
o------o------------o------------o------------o------------o------------o
+
f_8
−
| | | | | | |
+
\end{matrix}</math>
−
| f_6 | (p, q) | () | (()) | (()) | () |
+
|
−
| | | | | | |
+
<math>\begin{matrix}
−
| f_9 | ((p, q)) | () | (()) | (()) | () |
+
(p)(q)
−
| | | | | | |
+
\\[4pt]
−
o------o------------o------------o------------o------------o------------o
+
(p)~q~
−
| | | | | | |
+
\\[4pt]
−
| f_5 | (q) | (()) | () | (()) | () |
+
~p~(q)
−
| | | | | | |
+
\\[4pt]
−
| f_10 | q | (()) | () | (()) | () |
+
~p~~q~
−
| | | | | | |
+
\end{matrix}</math>
−
o------o------------o------------o------------o------------o------------o
+
|
−
| | | | | | |
+
<math>\begin{matrix}
−
| f_7 | (p q) | ((p, q)) | q | p | () |
+
~\operatorname{d}p~~\operatorname{d}q~
−
| | | | | | |
+
\\[4pt]
−
| f_11 | (p (q)) | (p, q) | (q) | p | () |
+
~\operatorname{d}p~(\operatorname{d}q)
−
| | | | | | |
+
\\[4pt]
−
| f_13 | ((p) q) | (p, q) | q | (p) | () |
+
(\operatorname{d}p)~\operatorname{d}q~
−
| | | | | | |
+
\\[4pt]
−
| f_14 | ((p)(q)) | ((p, q)) | (q) | (p) | () |
+
(\operatorname{d}p)(\operatorname{d}q)
−
| | | | | | |
+
\end{matrix}</math>
−
o------o------------o------------o------------o------------o------------o
+
|
−
| | | | | | |
+
<math>\begin{matrix}
−
| f_15 | (()) | () | () | () | () |
+
~\operatorname{d}p~(\operatorname{d}q)
−
| | | | | | |
+
\\[4pt]
−
o------o------------o------------o------------o------------o------------o
+
~\operatorname{d}p~~\operatorname{d}q~
−
</pre>
+
\\[4pt]
+
(\operatorname{d}p)(\operatorname{d}q)
+
\\[4pt]
+
(\operatorname{d}p)~\operatorname{d}q~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(\operatorname{d}p)~\operatorname{d}q~
+
\\[4pt]
+
(\operatorname{d}p)(\operatorname{d}q)
+
\\[4pt]
+
~\operatorname{d}p~~\operatorname{d}q~
+
\\[4pt]
+
~\operatorname{d}p~(\operatorname{d}q)
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(\operatorname{d}p)(\operatorname{d}q)
+
\\[4pt]
+
(\operatorname{d}p)~\operatorname{d}q~
+
\\[4pt]
+
~\operatorname{d}p~(\operatorname{d}q)
+
\\[4pt]
+
~\operatorname{d}p~~\operatorname{d}q~
+
\end{matrix}</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_3
+
\\[4pt]
+
f_{12}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(p)
+
\\[4pt]
+
~p~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
~\operatorname{d}p~
+
\\[4pt]
+
(\operatorname{d}p)
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
~\operatorname{d}p~
+
\\[4pt]
+
(\operatorname{d}p)
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(\operatorname{d}p)
+
\\[4pt]
+
~\operatorname{d}p~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(\operatorname{d}p)
+
\\[4pt]
+
~\operatorname{d}p~
+
\end{matrix}</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_6
+
\\[4pt]
+
f_9
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
~(p,~q)~
+
\\[4pt]
+
((p,~q))
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
~(\operatorname{d}p,~\operatorname{d}q)~
+
\\[4pt]
+
((\operatorname{d}p,~\operatorname{d}q))
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
((\operatorname{d}p,~\operatorname{d}q))
+
\\[4pt]
+
~(\operatorname{d}p,~\operatorname{d}q)~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
((\operatorname{d}p,~\operatorname{d}q))
+
\\[4pt]
+
~(\operatorname{d}p,~\operatorname{d}q)~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
~(\operatorname{d}p,~\operatorname{d}q)~
+
\\[4pt]
+
((\operatorname{d}p,~\operatorname{d}q))
+
\end{matrix}</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_5
+
\\[4pt]
+
f_{10}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(q)
+
\\[4pt]
+
~q~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
~\operatorname{d}q~
+
\\[4pt]
+
(\operatorname{d}q)
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(\operatorname{d}q)
+
\\[4pt]
+
~\operatorname{d}q~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
~\operatorname{d}q~
+
\\[4pt]
+
(\operatorname{d}q)
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(\operatorname{d}q)
+
\\[4pt]
+
~\operatorname{d}q~
+
\end{matrix}</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_7
+
\\[4pt]
+
f_{11}
+
\\[4pt]
+
f_{13}
+
\\[4pt]
+
f_{14}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(~p~~q~)
+
\\[4pt]
+
(~p~(q))
+
\\[4pt]
+
((p)~q~)
+
\\[4pt]
+
((p)(q))
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
((\operatorname{d}p)(\operatorname{d}q))
+
\\[4pt]
+
((\operatorname{d}p)~\operatorname{d}q~)
+
\\[4pt]
+
(~\operatorname{d}p~(\operatorname{d}q))
+
\\[4pt]
+
(~\operatorname{d}p~~\operatorname{d}q~)
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
((\operatorname{d}p)~\operatorname{d}q~)
+
\\[4pt]
+
((\operatorname{d}p)(\operatorname{d}q))
+
\\[4pt]
+
(~\operatorname{d}p~~\operatorname{d}q~)
+
\\[4pt]
+
(~\operatorname{d}p~(\operatorname{d}q))
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(~\operatorname{d}p~(\operatorname{d}q))
+
\\[4pt]
+
(~\operatorname{d}p~~\operatorname{d}q~)
+
\\[4pt]
+
((\operatorname{d}p)(\operatorname{d}q))
+
\\[4pt]
+
((\operatorname{d}p)~\operatorname{d}q~)
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(~\operatorname{d}p~~\operatorname{d}q~)
+
\\[4pt]
+
(~\operatorname{d}p~(\operatorname{d}q))
+
\\[4pt]
+
((\operatorname{d}p)~\operatorname{d}q~)
+
\\[4pt]
+
((\operatorname{d}p)(\operatorname{d}q))
+
\end{matrix}</math>
+
|-
+
| <math>f_{15}\!</math>
+
| <math>((~))</math>
+
| <math>((~))</math>
+
| <math>((~))</math>
+
| <math>((~))</math>
+
| <math>((~))</math>
+
|}
+
+
<br>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%"
+
|+ <math>\text{Table A6.}~~\operatorname{D}f ~\text{Expanded Over Ordinary Features}~ \{ p, q \}</math>
+
|- style="background:#f0f0ff"
+
| width="10%" |
+
| width="18%" | <math>f\!</math>
+
| width="18%" | <math>\operatorname{D}f|_{xy}</math>
+
| width="18%" | <math>\operatorname{D}f|_{p(q)}</math>
+
| width="18%" | <math>\operatorname{D}f|_{(p)q}</math>
+
| width="18%" | <math>\operatorname{D}f|_{(p)(q)}</math>
+
|-
+
| <math>f_0\!</math>
+
| <math>(~)</math>
+
| <math>(~)</math>
+
| <math>(~)</math>
+
| <math>(~)</math>
+
| <math>(~)</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_1
+
\\[4pt]
+
f_2
+
\\[4pt]
+
f_4
+
\\[4pt]
+
f_8
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(p)(q)
+
\\[4pt]
+
(p)~q~
+
\\[4pt]
+
~p~(q)
+
\\[4pt]
+
~p~~q~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
~~\operatorname{d}p~~\operatorname{d}q~~
+
\\[4pt]
+
~~\operatorname{d}p~(\operatorname{d}q)~
+
\\[4pt]
+
~(\operatorname{d}p)~\operatorname{d}q~~
+
\\[4pt]
+
((\operatorname{d}p)(\operatorname{d}q))
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
~~\operatorname{d}p~(\operatorname{d}q)~
+
\\[4pt]
+
~~\operatorname{d}p~~\operatorname{d}q~~
+
\\[4pt]
+
((\operatorname{d}p)(\operatorname{d}q))
+
\\[4pt]
+
~(\operatorname{d}p)~\operatorname{d}q~~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
~(\operatorname{d}p)~\operatorname{d}q~~
+
\\[4pt]
+
((\operatorname{d}p)(\operatorname{d}q))
+
\\[4pt]
+
~~\operatorname{d}p~~\operatorname{d}q~~
+
\\[4pt]
+
~~\operatorname{d}p~(\operatorname{d}q)~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
((\operatorname{d}p)(\operatorname{d}q))
+
\\[4pt]
+
~(\operatorname{d}p)~\operatorname{d}q~~
+
\\[4pt]
+
~~\operatorname{d}p~(\operatorname{d}q)~
+
\\[4pt]
+
~~\operatorname{d}p~~\operatorname{d}q~~
+
\end{matrix}</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_3
+
\\[4pt]
+
f_{12}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(p)
+
\\[4pt]
+
~p~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\operatorname{d}p
+
\\[4pt]
+
\operatorname{d}p
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\operatorname{d}p
+
\\[4pt]
+
\operatorname{d}p
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\operatorname{d}p
+
\\[4pt]
+
\operatorname{d}p
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\operatorname{d}p
+
\\[4pt]
+
\operatorname{d}p
+
\end{matrix}</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_6
+
\\[4pt]
+
f_9
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
~(p,~q)~
+
\\[4pt]
+
((p,~q))
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(\operatorname{d}p,~\operatorname{d}q)
+
\\[4pt]
+
(\operatorname{d}p,~\operatorname{d}q)
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(\operatorname{d}p,~\operatorname{d}q)
+
\\[4pt]
+
(\operatorname{d}p,~\operatorname{d}q)
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(\operatorname{d}p,~\operatorname{d}q)
+
\\[4pt]
+
(\operatorname{d}p,~\operatorname{d}q)
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(\operatorname{d}p,~\operatorname{d}q)
+
\\[4pt]
+
(\operatorname{d}p,~\operatorname{d}q)
+
\end{matrix}</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_5
+
\\[4pt]
+
f_{10}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(q)
+
\\[4pt]
+
~q~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\operatorname{d}q
+
\\[4pt]
+
\operatorname{d}q
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\operatorname{d}q
+
\\[4pt]
+
\operatorname{d}q
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\operatorname{d}q
+
\\[4pt]
+
\operatorname{d}q
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\operatorname{d}q
+
\\[4pt]
+
\operatorname{d}q
+
\end{matrix}</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_7
+
\\[4pt]
+
f_{11}
+
\\[4pt]
+
f_{13}
+
\\[4pt]
+
f_{14}
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
(~p~~q~)
+
\\[4pt]
+
(~p~(q))
+
\\[4pt]
+
((p)~q~)
+
\\[4pt]
+
((p)(q))
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
((\operatorname{d}p)(\operatorname{d}q))
+
\\[4pt]
+
~(\operatorname{d}p)~\operatorname{d}q~~
+
\\[4pt]
+
~~\operatorname{d}p~(\operatorname{d}q)~
+
\\[4pt]
+
~~\operatorname{d}p~~\operatorname{d}q~~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
~(\operatorname{d}p)~\operatorname{d}q~~
+
\\[4pt]
+
((\operatorname{d}p)(\operatorname{d}q))
+
\\[4pt]
+
~~\operatorname{d}p~~\operatorname{d}q~~
+
\\[4pt]
+
~~\operatorname{d}p~(\operatorname{d}q)~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
~~\operatorname{d}p~(\operatorname{d}q)~
+
\\[4pt]
+
~~\operatorname{d}p~~\operatorname{d}q~~
+
\\[4pt]
+
((\operatorname{d}p)(\operatorname{d}q))
+
\\[4pt]
+
~(\operatorname{d}p)~\operatorname{d}q~~
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
~~\operatorname{d}p~~\operatorname{d}q~~
+
\\[4pt]
+
~~\operatorname{d}p~(\operatorname{d}q)~
+
\\[4pt]
+
~(\operatorname{d}p)~\operatorname{d}q~~
+
\\[4pt]
+
((\operatorname{d}p)(\operatorname{d}q))
+
\end{matrix}</math>
+
|-
+
| <math>f_{15}\!</math>
+
| <math>((~))</math>
+
| <math>((~))</math>
+
| <math>((~))</math>
+
| <math>((~))</math>
+
| <math>((~))</math>
+
|}
+
+
<br>
==Note 10==
==Note 10==