Line 3,629: |
Line 3,629: |
| By way of collecting a short-term pay-off for all the work — not to mention all the peirce-spiration — that we sweated out over the regular representations of the Klein 4-group <math>V_4,\!</math> let us write out as quickly as possible in ''relative form'' a minimal budget of representations of the symmetric group on three letters, <math>S_3 = \operatorname{Sym}(3).</math> After doing the usual bit of compare and contrast among these divers representations, we will have enough concrete material beneath our abstract belts to tackle a few of the presently obscur'd details of Peirce's early "Algebra + Logic" papers. | | By way of collecting a short-term pay-off for all the work — not to mention all the peirce-spiration — that we sweated out over the regular representations of the Klein 4-group <math>V_4,\!</math> let us write out as quickly as possible in ''relative form'' a minimal budget of representations of the symmetric group on three letters, <math>S_3 = \operatorname{Sym}(3).</math> After doing the usual bit of compare and contrast among these divers representations, we will have enough concrete material beneath our abstract belts to tackle a few of the presently obscur'd details of Peirce's early "Algebra + Logic" papers. |
| | | |
− | {| align="center" cellpadding="10" width="90%" | + | <br> |
− | | align="center" |
| + | |
− | <pre> | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" |
− | Table 1. Permutations or Substitutions in Sym {A, B, C}
| + | |+ <math>\text{Permutation Substitutions in}~ \operatorname{Sym} \{ \mathrm{A}, \mathrm{B}, \mathrm{C} \}</math> |
− | o---------o---------o---------o---------o---------o---------o
| + | |- style="background:#f0f0ff" |
− | | | | | | | | | + | | width="16%" | <math>\operatorname{e}</math> |
− | | e | f | g | h | i | j | | + | | width="16%" | <math>\operatorname{f}</math> |
− | | | | | | | | | + | | width="16%" | <math>\operatorname{g}</math> |
− | o=========o=========o=========o=========o=========o=========o
| + | | width="16%" | <math>\operatorname{h}</math> |
− | | | | | | | |
| + | | width="16%" | <math>\operatorname{i}</math> |
− | | A B C | A B C | A B C | A B C | A B C | A B C |
| + | | width="16%" | <math>\operatorname{j}</math> |
− | | | | | | | |
| + | |- |
− | | | | | | | | | | | | | | | | | | | | | | | | | |
| + | | |
− | | v v v | v v v | v v v | v v v | v v v | v v v |
| + | <math>\begin{matrix} |
− | | | | | | | |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
− | | A B C | C A B | B C A | A C B | C B A | B A C |
| + | \\[3pt] |
− | | | | | | | |
| + | \downarrow & \downarrow & \downarrow |
− | o---------o---------o---------o---------o---------o---------o
| + | \\[6pt] |
− | </pre> | + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | \mathrm{C} & \mathrm{A} & \mathrm{B} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | \mathrm{B} & \mathrm{C} & \mathrm{A} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | \mathrm{A} & \mathrm{C} & \mathrm{B} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | \mathrm{C} & \mathrm{B} & \mathrm{A} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | \mathrm{B} & \mathrm{A} & \mathrm{C} |
| + | \end{matrix}</math> |
| |} | | |} |
| + | |
| + | <br> |
| | | |
| Writing this table in relative form generates the following natural representation of <math>S_3.\!</math> | | Writing this table in relative form generates the following natural representation of <math>S_3.\!</math> |