Line 3,945: |
Line 3,945: |
| Recalling the manner of our acquaintance with the symmetric group <math>S_3,\!</math> we began with the ''bigraph'' (bipartite graph) picture of its natural representation as the set of all permutations or substitutions on the set <math>X = \{ \mathrm{A}, \mathrm{B}, \mathrm{C} \}.\!</math> | | Recalling the manner of our acquaintance with the symmetric group <math>S_3,\!</math> we began with the ''bigraph'' (bipartite graph) picture of its natural representation as the set of all permutations or substitutions on the set <math>X = \{ \mathrm{A}, \mathrm{B}, \mathrm{C} \}.\!</math> |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | <br> |
− | | align="center" |
| + | |
− | <pre> | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" |
− | Table 1. Permutations or Substitutions in Sym {A, B, C}
| + | |+ <math>\text{Permutation Substitutions in}~ \operatorname{Sym} \{ \mathrm{A}, \mathrm{B}, \mathrm{C} \}</math> |
− | o---------o---------o---------o---------o---------o---------o
| + | |- style="background:#f0f0ff" |
− | | | | | | | | | + | | width="16%" | <math>\operatorname{e}</math> |
− | | e | f | g | h | i | j | | + | | width="16%" | <math>\operatorname{f}</math> |
− | | | | | | | | | + | | width="16%" | <math>\operatorname{g}</math> |
− | o=========o=========o=========o=========o=========o=========o
| + | | width="16%" | <math>\operatorname{h}</math> |
− | | | | | | | |
| + | | width="16%" | <math>\operatorname{i}</math> |
− | | A B C | A B C | A B C | A B C | A B C | A B C |
| + | | width="16%" | <math>\operatorname{j}</math> |
− | | | | | | | |
| + | |- |
− | | | | | | | | | | | | | | | | | | | | | | | | | |
| + | | |
− | | v v v | v v v | v v v | v v v | v v v | v v v |
| + | <math>\begin{matrix} |
− | | | | | | | |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
− | | A B C | C A B | B C A | A C B | C B A | B A C |
| + | \\[3pt] |
− | | | | | | | |
| + | \downarrow & \downarrow & \downarrow |
− | o---------o---------o---------o---------o---------o---------o
| + | \\[6pt] |
− | </pre> | + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | \mathrm{C} & \mathrm{A} & \mathrm{B} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | \mathrm{B} & \mathrm{C} & \mathrm{A} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | \mathrm{A} & \mathrm{C} & \mathrm{B} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | \mathrm{C} & \mathrm{B} & \mathrm{A} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | \mathrm{B} & \mathrm{A} & \mathrm{C} |
| + | \end{matrix}</math> |
| |} | | |} |
| + | |
| + | <br> |
| | | |
| Then we rewrote these permutations — being functions <math>f : X \to X</math> they can also be recognized as being 2-adic relations <math>f \subseteq X \times X</math> — in ''relative form'', in effect, in the manner to which Peirce would have made us accustomed had he been given a relative half-a-chance: | | Then we rewrote these permutations — being functions <math>f : X \to X</math> they can also be recognized as being 2-adic relations <math>f \subseteq X \times X</math> — in ''relative form'', in effect, in the manner to which Peirce would have made us accustomed had he been given a relative half-a-chance: |