Line 3,509: |
Line 3,509: |
| So long as we're in the neighborhood, we might as well take in some more of the sights, for instance, the smallest example of a non-abelian (non-commutative) group. This is a group of six elements, say, <math>G = \{ \operatorname{e}, \operatorname{f}, \operatorname{g}, \operatorname{h}, \operatorname{i}, \operatorname{j} \},\!</math> with no relation to any other employment of these six symbols being implied, of course, and it can be most easily represented as the permutation group on a set of three letters, say, <math>X = \{ A, B, C \},\!</math> usually notated as <math>G = \operatorname{Sym}(X)</math> or more abstractly and briefly, as <math>\operatorname{Sym}(3)</math> or <math>S_3.\!</math> The next Table shows the intended correspondence between abstract group elements and the permutation or substitution operations in <math>\operatorname{Sym}(X).</math> | | So long as we're in the neighborhood, we might as well take in some more of the sights, for instance, the smallest example of a non-abelian (non-commutative) group. This is a group of six elements, say, <math>G = \{ \operatorname{e}, \operatorname{f}, \operatorname{g}, \operatorname{h}, \operatorname{i}, \operatorname{j} \},\!</math> with no relation to any other employment of these six symbols being implied, of course, and it can be most easily represented as the permutation group on a set of three letters, say, <math>X = \{ A, B, C \},\!</math> usually notated as <math>G = \operatorname{Sym}(X)</math> or more abstractly and briefly, as <math>\operatorname{Sym}(3)</math> or <math>S_3.\!</math> The next Table shows the intended correspondence between abstract group elements and the permutation or substitution operations in <math>\operatorname{Sym}(X).</math> |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | <br> |
− | | align="center" |
| + | |
− | <pre> | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" |
− | Table 2. Permutations or Substitutions in Sym_{A, B, C}
| + | |+ <math>\text{Permutation Substitutions in}~ \operatorname{Sym} \{ \mathrm{A}, \mathrm{B}, \mathrm{C} \}</math> |
− | o---------o---------o---------o---------o---------o---------o
| + | |- style="background:#f0f0ff" |
− | | | | | | | | | + | | width="16%" | <math>\operatorname{e}</math> |
− | | e | f | g | h | i | j | | + | | width="16%" | <math>\operatorname{f}</math> |
− | | | | | | | | | + | | width="16%" | <math>\operatorname{g}</math> |
− | o=========o=========o=========o=========o=========o=========o
| + | | width="16%" | <math>\operatorname{h}</math> |
− | | | | | | | |
| + | | width="16%" | <math>\operatorname{i}</math> |
− | | A B C | A B C | A B C | A B C | A B C | A B C |
| + | | width="16%" | <math>\operatorname{j}</math> |
− | | | | | | | |
| + | |- |
− | | | | | | | | | | | | | | | | | | | | | | | | | |
| + | | |
− | | v v v | v v v | v v v | v v v | v v v | v v v |
| + | <math>\begin{matrix} |
− | | | | | | | |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
− | | A B C | C A B | B C A | A C B | C B A | B A C |
| + | \\[3pt] |
− | | | | | | | |
| + | \downarrow & \downarrow & \downarrow |
− | o---------o---------o---------o---------o---------o---------o
| + | \\[6pt] |
− | </pre> | + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | \mathrm{C} & \mathrm{A} & \mathrm{B} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | \mathrm{B} & \mathrm{C} & \mathrm{A} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | \mathrm{A} & \mathrm{C} & \mathrm{B} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | \mathrm{C} & \mathrm{B} & \mathrm{A} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{A} & \mathrm{B} & \mathrm{C} |
| + | \\[3pt] |
| + | \downarrow & \downarrow & \downarrow |
| + | \\[6pt] |
| + | \mathrm{B} & \mathrm{A} & \mathrm{C} |
| + | \end{matrix}</math> |
| |} | | |} |
| + | |
| + | <br> |
| | | |
| Here is the operation table for <math>S_3,\!</math> given in abstract fashion: | | Here is the operation table for <math>S_3,\!</math> given in abstract fashion: |
Line 3,535: |
Line 3,578: |
| | align="center" | | | | align="center" | |
| <pre> | | <pre> |
− | Table 1. Symmetric Group S_3
| + | Symmetric Group S_3 |
| o-------------------------------------------------o | | o-------------------------------------------------o |
| | | | | | | |