Line 3,206: |
Line 3,206: |
| Back to our current subinstance, the example in support of our first example. I will try to reconstruct it in a less confusing way. | | Back to our current subinstance, the example in support of our first example. I will try to reconstruct it in a less confusing way. |
| | | |
− | Consider the universe of discourse <math>\mathbf{1} = A + B + C\!</math> and the 2-adic relation <math>n = {}^{\backprime\backprime}\, \text{noder of}\, \underline{~~~~}\, {}^{\prime\prime},</math> as when "<math>X\!</math> is a data record that contains a pointer to <math>Y\!</math>". That interpretation is not important, it's just for the sake of intuition. In general terms, the 2-adic relation <math>n\!</math> can be represented by this matrix: | + | Consider the universe of discourse <math>\mathbf{1} = \mathrm{A} + \mathrm{B} + \mathrm{C}</math> and the 2-adic relation <math>\mathit{n} = {}^{\backprime\backprime}\, \text{noder of}\, \underline{~~~~}\, {}^{\prime\prime},</math> as when "<math>X\!</math> is a data record that contains a pointer to <math>Y\!</math>". That interpretation is not important, it's just for the sake of intuition. In general terms, the 2-adic relation <math>n\!</math> can be represented by this matrix: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
| | align="center" | | | | align="center" | |
| <math>\begin{bmatrix} | | <math>\begin{bmatrix} |
− | n_{AA} (A\!:\!A) & n_{AB} (A\!:\!B) & n_{AC} (A\!:\!C)
| + | \mathit{n}_\mathrm{AA} (\mathrm{A}\!:\!\mathrm{A}) & |
| + | \mathit{n}_\mathrm{AB} (\mathrm{A}\!:\!\mathrm{B}) & |
| + | \mathit{n}_\mathrm{AC} (\mathrm{A}\!:\!\mathrm{C}) |
| \\ | | \\ |
− | n_{BA} (B\!:\!A) & n_{BB} (B\!:\!B) & n_{BC} (B\!:\!C)
| + | \mathit{n}_\mathrm{BA} (\mathrm{B}\!:\!\mathrm{A}) & |
| + | \mathit{n}_\mathrm{BB} (\mathrm{B}\!:\!\mathrm{B}) & |
| + | \mathit{n}_\mathrm{BC} (\mathrm{B}\!:\!\mathrm{C}) |
| \\ | | \\ |
− | n_{CA} (C\!:\!A) & n_{CB} (C\!:\!B) & n_{CC} (C\!:\!C)
| + | \mathit{n}_\mathrm{CA} (\mathrm{C}\!:\!\mathrm{A}) & |
| + | \mathit{n}_\mathrm{CB} (\mathrm{C}\!:\!\mathrm{B}) & |
| + | \mathit{n}_\mathrm{CC} (\mathrm{C}\!:\!\mathrm{C}) |
| \end{bmatrix}</math> | | \end{bmatrix}</math> |
| |} | | |} |
| | | |
− | More specifically, let <math>n\!</math> be such that: | + | More specifically, let <math>\mathit{n}\!</math> be such that: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
| | align="center" | | | | align="center" | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
− | A ~\text{is a noder of}~ A ~\text{and}~ B, | + | \mathrm{A} ~\text{is a noder of}~ \mathrm{A} ~\text{and}~ \mathrm{B}, |
| \\ | | \\ |
− | B ~\text{is a noder of}~ B ~\text{and}~ C, | + | \mathrm{B} ~\text{is a noder of}~ \mathrm{B} ~\text{and}~ \mathrm{C}, |
| \\ | | \\ |
− | C ~\text{is a noder of}~ C ~\text{and}~ A. | + | \mathrm{C} ~\text{is a noder of}~ \mathrm{C} ~\text{and}~ \mathrm{A}. |
| \end{array}</math> | | \end{array}</math> |
| |} | | |} |
| | | |
− | Filling in the instantial values of the coefficients <math>n_{ij},\!</math> as the indices <math>i\!</math> and <math>j\!</math> range over the universe of discourse, the relation <math>n\!</math> is represented by the following matrix: | + | Filling in the instantial values of the coefficients <math>\mathit{n}_{ij},\!</math> as the indices <math>i\!</math> and <math>j\!</math> range over the universe of discourse, the relation <math>\mathit{n}\!</math> is represented by the following matrix: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
| | align="center" | | | | align="center" | |
| <math>\begin{bmatrix} | | <math>\begin{bmatrix} |
− | 1 \cdot (A\!:\!A) & 1 \cdot (A\!:\!B) & 0 \cdot (A\!:\!C) | + | 1 \cdot (\mathrm{A}\!:\!\mathrm{A}) & |
| + | 1 \cdot (\mathrm{A}\!:\!\mathrm{B}) & |
| + | 0 \cdot (\mathrm{A}\!:\!\mathrm{C}) |
| \\ | | \\ |
− | 0 \cdot (B\!:\!A) & 1 \cdot (B\!:\!B) & 1 \cdot (B\!:\!C) | + | 0 \cdot (\mathrm{B}\!:\!\mathrm{A}) & |
| + | 1 \cdot (\mathrm{B}\!:\!\mathrm{B}) & |
| + | 1 \cdot (\mathrm{B}\!:\!\mathrm{C}) |
| \\ | | \\ |
− | 1 \cdot (C\!:\!A) & 0 \cdot (C\!:\!B) & 1 \cdot (C\!:\!C) | + | 1 \cdot (\mathrm{C}\!:\!\mathrm{A}) & |
| + | 0 \cdot (\mathrm{C}\!:\!\mathrm{B}) & |
| + | 1 \cdot (\mathrm{C}\!:\!\mathrm{C}) |
| \end{bmatrix}</math> | | \end{bmatrix}</math> |
| |} | | |} |
Line 3,261: |
Line 3,273: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
− | | <math>n ~=~ A\!:\!A ~+~ B\!:\!B ~+~ C\!:\!C ~+~ A\!:\!B ~+~ B\!:\!C ~+~ C\!:\!A</math> | + | | <math>n ~=~ \mathrm{A}\!:\!\mathrm{A} ~+~ \mathrm{B}\!:\!\mathrm{B} ~+~ \mathrm{C}\!:\!\mathrm{C} ~+~ \mathrm{A}\!:\!\mathrm{B} ~+~ \mathrm{B}\!:\!\mathrm{C} ~+~ \mathrm{C}\!:\!\mathrm{A}</math> |
| |} | | |} |
| + | |
| + | Recognizing <math>\mathit{1} = \mathrm{A}\!:\!\mathrm{A} + \mathrm{B}\!:\!\mathrm{B} + \mathrm{C}\!:\!\mathrm{C}</math> to be the identity transformation, the 2-adic relation <math>\mathit{n} = {}^{\backprime\backprime}\, \text{noder of}\, \underline{~~~~}\, {}^{\prime\prime}</math> may be represented by an element <math>\mathit{1} + \mathrm{A}\!:\!\mathrm{B} + \mathrm{B}\!:\!\mathrm{C} + \mathrm{C}\!:\!\mathrm{A}</math> of the so-called ''group ring'', all of which just makes this element a special sort of linear transformation. |
| | | |
| <pre> | | <pre> |
− | Recognizing !1! = A:A + B:B + C:C to be the identity transformation,
| |
− | the 2-adic relation n = "noder of" may be represented by an element
| |
− | !1! + A:B + B:C + C:A of the so-called "group ring", all of which
| |
− | just makes this element a special sort of linear transformation.
| |
− |
| |
| Up to this point, we are still reading the elementary relatives of | | Up to this point, we are still reading the elementary relatives of |
| the form I:J in the way that Peirce reads them in logical contexts: | | the form I:J in the way that Peirce reads them in logical contexts: |