| Line 3,051: |
Line 3,051: |
| | | | |
| | {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
| − | | [Let] <math>A\!:\!B</math> be taken to denote the elementary relative which multiplied into <math>B\!</math> gives <math>A.\!</math> | + | | Elementary simple relatives are connected together in systems of four. For if <math>\mathrm{A}\!:\!\mathrm{B}</math> be taken to denote the elementary relative which multiplied into <math>\mathrm{B}\!</math> gives <math>\mathrm{A},\!</math> then this relation existing as elementary, we have the four elementary relatives |
| | + | |- |
| | + | | align="center" | <math>\mathrm{A}\!:\!\mathrm{A} \qquad \mathrm{A}\!:\!\mathrm{B} \qquad \mathrm{B}\!:\!\mathrm{A} \qquad \mathrm{B}\!:\!\mathrm{B}</math> |
| | |- | | |- |
| | | C.S. Peirce, ''Collected Papers'', CP 3.123. | | | C.S. Peirce, ''Collected Papers'', CP 3.123. |
| Line 3,061: |
Line 3,063: |
| | | align="center" | | | | align="center" | |
| | <math>\begin{bmatrix} | | <math>\begin{bmatrix} |
| − | A\!:\!A & A\!:\!B & A\!:\!C | + | \mathrm{A}\!:\!\mathrm{A} & \mathrm{A}\!:\!\mathrm{B} & \mathrm{A}\!:\!\mathrm{C} |
| | \\ | | \\ |
| − | B\!:\!A & B\!:\!B & B\!:\!C | + | \mathrm{B}\!:\!\mathrm{A} & \mathrm{B}\!:\!\mathrm{B} & \mathrm{B}\!:\!\mathrm{C} |
| | \\ | | \\ |
| − | C\!:\!A & C\!:\!B & C\!:\!C | + | \mathrm{C}\!:\!\mathrm{A} & \mathrm{C}\!:\!\mathrm{B} & \mathrm{C}\!:\!\mathrm{C} |
| | \end{bmatrix}</math> | | \end{bmatrix}</math> |
| | |} | | |} |
| Line 3,082: |
Line 3,084: |
| | |} | | |} |
| | | | |
| − | So, for example, let us suppose that we have the small universe <math>\{ A, B, C \},\!</math> and the 2-adic relation <math>m = {}^{\backprime\backprime}\, \text{mover of}\, \underline{~~~~}\, {}^{\prime\prime}</math> that is represented by the following matrix: | + | So, for example, let us suppose that we have the small universe <math>\{ \mathrm{A}, \mathrm{B}, \mathrm{C} \},\!</math> and the 2-adic relation <math>\mathit{m} = {}^{\backprime\backprime}\, \text{mover of}\, \underline{~~~~}\, {}^{\prime\prime}</math> that is represented by the following matrix: |
| | | | |
| | {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
| | | align="center" | | | | align="center" | |
| | <math>\begin{bmatrix} | | <math>\begin{bmatrix} |
| − | m_{AA} (A\!:\!A) & m_{AB} (A\!:\!B) & m_{AC} (A\!:\!C) | + | m_\mathrm{AA} (\mathrm{A}\!:\!\mathrm{A}) & |
| | + | m_\mathrm{AB} (\mathrm{A}\!:\!\mathrm{B}) & |
| | + | m_\mathrm{AC} (\mathrm{A}\!:\!\mathrm{C}) |
| | \\ | | \\ |
| − | m_{BA} (B\!:\!A) & m_{BB} (B\!:\!B) & m_{BC} (B\!:\!C) | + | m_\mathrm{BA} (\mathrm{B}\!:\!\mathrm{A}) & |
| | + | m_\mathrm{BB} (\mathrm{B}\!:\!\mathrm{B}) & |
| | + | m_\mathrm{BC} (\mathrm{B}\!:\!\mathrm{C}) |
| | \\ | | \\ |
| − | m_{CA} (C\!:\!A) & m_{CB} (C\!:\!B) & m_{CC} (C\!:\!C) | + | m_\mathrm{CA} (\mathrm{C}\!:\!\mathrm{A}) & |
| | + | m_\mathrm{CB} (\mathrm{C}\!:\!\mathrm{B}) & |
| | + | m_\mathrm{CC} (\mathrm{C}\!:\!\mathrm{C}) |
| | \end{bmatrix}</math> | | \end{bmatrix}</math> |
| | |} | | |} |
| | | | |
| − | Also, let <math>m\!</math> be such that | + | Also, let <math>\mathit{m}\!</math> be such that: |
| | | | |
| | {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
| | | align="center" | | | | align="center" | |
| | <math>\begin{array}{l} | | <math>\begin{array}{l} |
| − | A ~\text{is a mover of}~ A ~\text{and}~ B, | + | \mathrm{A} ~\text{is a mover of}~ \mathrm{A} ~\text{and}~ \mathrm{B}, |
| | \\ | | \\ |
| − | B ~\text{is a mover of}~ B ~\text{and}~ C, | + | \mathrm{B} ~\text{is a mover of}~ \mathrm{B} ~\text{and}~ \mathrm{C}, |
| | \\ | | \\ |
| − | C ~\text{is a mover of}~ C ~\text{and}~ A. | + | \mathrm{C} ~\text{is a mover of}~ \mathrm{C} ~\text{and}~ \mathrm{A}. |
| | \end{array}</math> | | \end{array}</math> |
| | |} | | |} |
| | | | |
| − | In sum, <math>m\!</math> is represented by the following matrix: | + | In sum, <math>\mathit{m}\!</math> is represented by the following matrix: |
| | | | |
| | {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
| | | align="center" | | | | align="center" | |
| | <math>\begin{bmatrix} | | <math>\begin{bmatrix} |
| − | 1 \cdot (A\!:\!A) & 1 \cdot (A\!:\!B) & 0 \cdot (A\!:\!C) | + | 1 \cdot (\mathrm{A}\!:\!\mathrm{A}) & |
| | + | 1 \cdot (\mathrm{A}\!:\!\mathrm{B}) & |
| | + | 0 \cdot (\mathrm{A}\!:\!\mathrm{C}) |
| | \\ | | \\ |
| − | 0 \cdot (B\!:\!A) & 1 \cdot (B\!:\!B) & 1 \cdot (B\!:\!C) | + | 0 \cdot (\mathrm{B}\!:\!\mathrm{A}) & |
| | + | 1 \cdot (\mathrm{B}\!:\!\mathrm{B}) & |
| | + | 1 \cdot (\mathrm{B}\!:\!\mathrm{C}) |
| | \\ | | \\ |
| − | 1 \cdot (C\!:\!A) & 0 \cdot (C\!:\!B) & 1 \cdot (C\!:\!C) | + | 1 \cdot (\mathrm{C}\!:\!\mathrm{A}) & |
| | + | 0 \cdot (\mathrm{C}\!:\!\mathrm{B}) & |
| | + | 1 \cdot (\mathrm{C}\!:\!\mathrm{C}) |
| | \end{bmatrix}</math> | | \end{bmatrix}</math> |
| | |} | | |} |