Line 3,561: |
Line 3,561: |
| By way of collecting a short-term pay-off for all the work — not to mention all the peirce-spiration — that we sweated out over the regular representations of the Klein 4-group <math>V_4,\!</math> let us write out as quickly as possible in ''relative form'' a minimal budget of representations of the symmetric group on three letters, <math>S_3 = \operatorname{Sym}(3).</math> After doing the usual bit of compare and contrast among these divers representations, we will have enough concrete material beneath our abstract belts to tackle a few of the presently obscur'd details of Peirce's early "Algebra + Logic" papers. | | By way of collecting a short-term pay-off for all the work — not to mention all the peirce-spiration — that we sweated out over the regular representations of the Klein 4-group <math>V_4,\!</math> let us write out as quickly as possible in ''relative form'' a minimal budget of representations of the symmetric group on three letters, <math>S_3 = \operatorname{Sym}(3).</math> After doing the usual bit of compare and contrast among these divers representations, we will have enough concrete material beneath our abstract belts to tackle a few of the presently obscur'd details of Peirce's early "Algebra + Logic" papers. |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellpadding="10" width="90%" |
| | align="center" | | | | align="center" | |
| <pre> | | <pre> |
Line 3,584: |
Line 3,584: |
| Writing this table in relative form generates the following natural representation of <math>S_3.\!</math> | | Writing this table in relative form generates the following natural representation of <math>S_3.\!</math> |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellpadding="10" width="90%" |
− | | | + | | align="center" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
| \operatorname{e} | | \operatorname{e} |
− | & = & \operatorname{A}:\operatorname{A} | + | & = & \operatorname{A}\!:\!\operatorname{A} |
− | & + & \operatorname{B}:\operatorname{B} | + | & + & \operatorname{B}\!:\!\operatorname{B} |
− | & + & \operatorname{C}:\operatorname{C} | + | & + & \operatorname{C}\!:\!\operatorname{C} |
| \\[4pt] | | \\[4pt] |
| \operatorname{f} | | \operatorname{f} |
− | & = & \operatorname{A}:\operatorname{C} | + | & = & \operatorname{A}\!:\!\operatorname{C} |
− | & + & \operatorname{B}:\operatorname{A} | + | & + & \operatorname{B}\!:\!\operatorname{A} |
− | & + & \operatorname{C}:\operatorname{B} | + | & + & \operatorname{C}\!:\!\operatorname{B} |
| \\[4pt] | | \\[4pt] |
| \operatorname{g} | | \operatorname{g} |
− | & = & \operatorname{A}:\operatorname{B} | + | & = & \operatorname{A}\!:\!\operatorname{B} |
− | & + & \operatorname{B}:\operatorname{C} | + | & + & \operatorname{B}\!:\!\operatorname{C} |
− | & + & \operatorname{C}:\operatorname{A} | + | & + & \operatorname{C}\!:\!\operatorname{A} |
| \\[4pt] | | \\[4pt] |
| \operatorname{h} | | \operatorname{h} |
− | & = & \operatorname{A}:\operatorname{A} | + | & = & \operatorname{A}\!:\!\operatorname{A} |
− | & + & \operatorname{B}:\operatorname{C} | + | & + & \operatorname{B}\!:\!\operatorname{C} |
− | & + & \operatorname{C}:\operatorname{B} | + | & + & \operatorname{C}\!:\!\operatorname{B} |
| \\[4pt] | | \\[4pt] |
| \operatorname{i} | | \operatorname{i} |
− | & = & \operatorname{A}:\operatorname{C} | + | & = & \operatorname{A}\!:\!\operatorname{C} |
− | & + & \operatorname{B}:\operatorname{B} | + | & + & \operatorname{B}\!:\!\operatorname{B} |
− | & + & \operatorname{C}:\operatorname{A} | + | & + & \operatorname{C}\!:\!\operatorname{A} |
| \\[4pt] | | \\[4pt] |
| \operatorname{j} | | \operatorname{j} |
− | & = & \operatorname{A}:\operatorname{B} | + | & = & \operatorname{A}\!:\!\operatorname{B} |
− | & + & \operatorname{B}:\operatorname{A} | + | & + & \operatorname{B}\!:\!\operatorname{A} |
− | & + & \operatorname{C}:\operatorname{C} | + | & + & \operatorname{C}\!:\!\operatorname{C} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |