Line 3,416: |
Line 3,416: |
| |} | | |} |
| | | |
− | In (1) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(\underline{~~}, y),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(\underline{~~}, y)</math> into <math>x \cdot y,</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : x \cdot y) ~|~ y \in G \}.</math> The pairs <math>(y : x \cdot y)</math> can be found by picking an <math>x\!</math> from the left margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run across the top margin. This aspect of pragmatic definition we recognize as the regular ante-representation:→ | + | In (1) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(\underline{~~}, y),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(\underline{~~}, y)</math> into <math>x \cdot y,</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : x \cdot y) ~|~ y \in G \}.</math> The pairs <math>(y : x \cdot y)</math> can be found by picking an <math>x\!</math> from the left margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run across the top margin. This aspect of pragmatic definition we recognize as the regular ante-representation: |
| | | |
− | <pre> | + | {| align="center" cellpadding="6" width="90%" |
− | e = e:e + f:f + g:g + h:h
| + | | align="center" | |
− | | + | <math>\begin{matrix} |
− | f = e:f + f:e + g:h + h:g
| + | \mathrm{e} |
− | | + | & = & \mathrm{e}:\mathrm{e} |
− | g = e:g + f:h + g:e + h:f
| + | & + & \mathrm{f}:\mathrm{f} |
− | | + | & + & \mathrm{g}:\mathrm{g} |
− | h = e:h + f:g + g:f + h:e
| + | & + & \mathrm{h}:\mathrm{h} |
− | </pre> | + | \\[4pt] |
| + | \mathrm{f} |
| + | & = & \mathrm{e}:\mathrm{f} |
| + | & + & \mathrm{f}:\mathrm{e} |
| + | & + & \mathrm{g}:\mathrm{h} |
| + | & + & \mathrm{h}:\mathrm{g} |
| + | \\[4pt] |
| + | \mathrm{g} |
| + | & = & \mathrm{e}:\mathrm{g} |
| + | & + & \mathrm{f}:\mathrm{h} |
| + | & + & \mathrm{g}:\mathrm{e} |
| + | & + & \mathrm{h}:\mathrm{f} |
| + | \\[4pt] |
| + | \mathrm{h} |
| + | & = & \mathrm{e}:\mathrm{h} |
| + | & + & \mathrm{f}:\mathrm{g} |
| + | & + & \mathrm{g}:\mathrm{f} |
| + | & + & \mathrm{h}:\mathrm{e} |
| + | \end{matrix}</math> |
| + | |} |
| | | |
| In (2) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(y, \underline{~~}),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(y, \underline{~~})</math> into <math>y \cdot x,</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : y \cdot x) ~|~ y \in G \}.</math> The pairs <math>(y : y \cdot x)</math> can be found by picking an <math>x\!</math> from the top margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run down the left margin. This aspect of pragmatic definition we recognize as the regular post-representation: | | In (2) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(y, \underline{~~}),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(y, \underline{~~})</math> into <math>y \cdot x,</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : y \cdot x) ~|~ y \in G \}.</math> The pairs <math>(y : y \cdot x)</math> can be found by picking an <math>x\!</math> from the top margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run down the left margin. This aspect of pragmatic definition we recognize as the regular post-representation: |
| | | |
− | <pre> | + | {| align="center" cellpadding="6" width="90%" |
− | e = e:e + f:f + g:g + h:h
| + | | align="center" | |
− | | + | <math>\begin{matrix} |
− | f = e:f + f:e + g:h + h:g
| + | \mathrm{e} |
− | | + | & = & \mathrm{e}:\mathrm{e} |
− | g = e:g + f:h + g:e + h:f
| + | & + & \mathrm{f}:\mathrm{f} |
− | | + | & + & \mathrm{g}:\mathrm{g} |
− | h = e:h + f:g + g:f + h:e
| + | & + & \mathrm{h}:\mathrm{h} |
− | </pre> | + | \\[4pt] |
| + | \mathrm{f} |
| + | & = & \mathrm{e}:\mathrm{f} |
| + | & + & \mathrm{f}:\mathrm{e} |
| + | & + & \mathrm{g}:\mathrm{h} |
| + | & + & \mathrm{h}:\mathrm{g} |
| + | \\[4pt] |
| + | \mathrm{g} |
| + | & = & \mathrm{e}:\mathrm{g} |
| + | & + & \mathrm{f}:\mathrm{h} |
| + | & + & \mathrm{g}:\mathrm{e} |
| + | & + & \mathrm{h}:\mathrm{f} |
| + | \\[4pt] |
| + | \mathrm{h} |
| + | & = & \mathrm{e}:\mathrm{h} |
| + | & + & \mathrm{f}:\mathrm{g} |
| + | & + & \mathrm{g}:\mathrm{f} |
| + | & + & \mathrm{h}:\mathrm{e} |
| + | \end{matrix}</math> |
| + | |} |
| | | |
| If the ante-rep looks the same as the post-rep, now that I'm writing them in the same dialect, that is because <math>V_4\!</math> is abelian (commutative), and so the two representations have the very same effects on each point of their bearing. | | If the ante-rep looks the same as the post-rep, now that I'm writing them in the same dialect, that is because <math>V_4\!</math> is abelian (commutative), and so the two representations have the very same effects on each point of their bearing. |