Line 3,277:
Line 3,277:
If we analyze this in accord with the spreadsheet model of relational composition, the core of it is a particular way of composing a 3-adic ''giving'' relation <math>G \subseteq X \times Y \times Z</math> with a 2-adic ''training'' relation <math>T \subseteq Y \times Z</math> in such a way as to determine a certain 2-adic relation <math>(G \circ T) \subseteq X \times Z.</math> Table 13 schematizes the associated constraints on tuples.
If we analyze this in accord with the spreadsheet model of relational composition, the core of it is a particular way of composing a 3-adic ''giving'' relation <math>G \subseteq X \times Y \times Z</math> with a 2-adic ''training'' relation <math>T \subseteq Y \times Z</math> in such a way as to determine a certain 2-adic relation <math>(G \circ T) \subseteq X \times Z.</math> Table 13 schematizes the associated constraints on tuples.
−
{| align="center" cellspacing="6" width="90%"
+
<br>
−
| align="center" |
+
−
<pre>
+
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
−
Table 13. Another Brand of Composition
+
|+ '''Table 13. Another Brand of Composition'''
−
o---------o---------o---------o---------o
+
|-
−
| # !1! | !1! | !1! |
+
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" |
−
o=========o=========o=========o=========o
+
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
−
| G # X | Y | Z |
+
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
−
o---------o---------o---------o---------o
+
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
−
| T # | Y | Z |
+
|-
−
o---------o---------o---------o---------o
+
| style="border-right:1px solid black" | <math>G\!</math>
−
| G o T # X | | Z |
+
| <math>X\!</math>
−
o---------o---------o---------o---------o
+
| <math>Y\!</math>
−
</pre>
+
| <math>Z\!</math>
+
|-
+
| style="border-right:1px solid black" | <math>T\!</math>
+
|
+
| <math>Y\!</math>
+
| <math>Z\!</math>
+
|-
+
| style="border-right:1px solid black" | <math>G \circ T</math>
+
| <math>X\!</math>
+
|
+
| <math>Z\!</math>
|}
|}
+
+
<br>
So we see that the notorious teridentity relation, which I have left equivocally denoted by the same symbol as the identity relation <math>\mathit{1},\!</math> is already implicit in Peirce's discussion at this point.
So we see that the notorious teridentity relation, which I have left equivocally denoted by the same symbol as the identity relation <math>\mathit{1},\!</math> is already implicit in Peirce's discussion at this point.