Line 3,375:
Line 3,375:
If we lay out this analysis of conjunction on the spreadsheet model of relational composition, the gist of it is the diagonal extension of a 2-adic ''loving'' relation <math>L \subseteq X \times Y</math> to the corresponding 3-adic ''being and loving'' relation <math>L \subseteq X \times X \times Y,</math> which is then composed in a specific way with a 2-adic ''serving'' relation <math>S \subseteq X \times Y,</math> so as to determine the 2-adic relation <math>L,\!S \subseteq X \times Y.</math> Table 15 schematizes the associated constraints on tuples.
If we lay out this analysis of conjunction on the spreadsheet model of relational composition, the gist of it is the diagonal extension of a 2-adic ''loving'' relation <math>L \subseteq X \times Y</math> to the corresponding 3-adic ''being and loving'' relation <math>L \subseteq X \times X \times Y,</math> which is then composed in a specific way with a 2-adic ''serving'' relation <math>S \subseteq X \times Y,</math> so as to determine the 2-adic relation <math>L,\!S \subseteq X \times Y.</math> Table 15 schematizes the associated constraints on tuples.
−
{| align="center" cellspacing="6" width="90%"
+
<br>
−
| align="center" |
+
−
<pre>
+
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
−
Table 15. Conjunction Via Composition
+
|+ '''Table 15. Conjunction Via Composition'''
−
o---------o---------o---------o---------o
+
|-
−
| # !1! | !1! | !1! |
+
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" |
−
o=========o=========o=========o=========o
+
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
−
| L, # X | X | Y |
+
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
−
o---------o---------o---------o---------o
+
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
−
| S # | X | Y |
+
|-
−
o---------o---------o---------o---------o
+
| style="border-right:1px solid black" | <math>L,\!</math>
−
| L , S # X | | Y |
+
| <math>X\!</math>
−
o---------o---------o---------o---------o
+
| <math>X\!</math>
−
</pre>
+
| <math>Y\!</math>
+
|-
+
| style="border-right:1px solid black" | <math>S\!</math>
+
|
+
| <math>X\!</math>
+
| <math>Y\!</math>
+
|-
+
| style="border-right:1px solid black" | <math>L,\!S</math>
+
| <math>X\!</math>
+
|
+
| <math>Y\!</math>
|}
|}
+
+
<br>
===Commentary Note 10.11===
===Commentary Note 10.11===