MyWikiBiz, Author Your Legacy — Monday November 25, 2024
Jump to navigationJump to search
467 bytes added
, 03:12, 24 April 2009
Line 3,154: |
Line 3,154: |
| If we analyze this in accord with the spreadsheet model of relational composition, the core of it is a particular way of composing a 3-adic ''giving'' relation <math>G \subseteq T \times U \times V</math> with a 2-adic ''loving'' relation <math>L \subseteq U \times W</math> so as to obtain a specialized sort of 3-adic relation <math>(G \circ L) \subseteq T \times W \times V.</math> The applicable constraints on tuples are shown in Table 9. | | If we analyze this in accord with the spreadsheet model of relational composition, the core of it is a particular way of composing a 3-adic ''giving'' relation <math>G \subseteq T \times U \times V</math> with a 2-adic ''loving'' relation <math>L \subseteq U \times W</math> so as to obtain a specialized sort of 3-adic relation <math>(G \circ L) \subseteq T \times W \times V.</math> The applicable constraints on tuples are shown in Table 9. |
| | | |
− | {| align="center" cellspacing="6" width="90%" | + | <br> |
− | | align="center" |
| + | |
− | <pre>
| + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:70%" |
− | Table 9. Composite of Triadic and Dyadic Relations | + | |+ '''Table 9. Composite of Triadic and Dyadic Relations''' |
− | o---------o---------o---------o---------o---------o
| + | |- |
− | | # !1! | !1! | !1! | !1! | | + | | style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | |
− | o=========o=========o=========o=========o=========o
| + | | style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math> |
− | | G # T | U | | V | | + | | style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math> |
− | o---------o---------o---------o---------o---------o
| + | | style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math> |
− | | L # | U | W | | | + | | style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math> |
− | o---------o---------o---------o---------o---------o
| + | |- |
− | | G o L # T | | W | V | | + | | style="border-right:1px solid black" | <math>G\!</math> |
− | o---------o---------o---------o---------o---------o
| + | | <math>T\!</math> |
− | </pre> | + | | <math>U\!</math> |
| + | | |
| + | | <math>V\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>L\!</math> |
| + | | |
| + | | <math>U\!</math> |
| + | | <math>W\!</math> |
| + | | |
| + | |- |
| + | | style="border-right:1px solid black" | <math>G \circ L</math> |
| + | | <math>T\!</math> |
| + | | |
| + | | <math>W\!</math> |
| + | | <math>V\!</math> |
| |} | | |} |
| + | |
| + | <br> |
| | | |
| The hypergraph picture of the abstract composition is given in Figure 10. | | The hypergraph picture of the abstract composition is given in Figure 10. |