| Line 3,841: |
Line 3,841: |
| | In the light of these considerations, the local flags of a 2-adic relation <math>L \subseteq X \times Y</math> may be formulated as follows: | | In the light of these considerations, the local flags of a 2-adic relation <math>L \subseteq X \times Y</math> may be formulated as follows: |
| | | | |
| − | {| cellpadding="4" | + | {| align="center" cellspacing="6" width="90%" |
| − | | ''L''<sub>''u''.''X''</sub> | + | | |
| − | | =
| + | <math>\begin{array}{lll} |
| − | | {(x, y) ∈ ''L'' : ''x'' = ''u''}
| + | L_{u \star X} |
| − | |-
| + | & = & |
| − | |
| + | \{ (x, y) \in L : x = u \} |
| − | | =
| + | \\[6pt] |
| − | | the set of all ordered pairs in ''L'' incident with ''u'' in ''X''.
| + | & = & |
| − | |-
| + | \text{the set of all ordered pairs in}~ L ~\text{incident with}~ u \in X. |
| − | | ''L''<sub>''v''.''Y''</sub>
| + | \\[9pt] |
| − | | =
| + | L_{v \star Y} |
| − | | {(''x'', ''y'') ∈ ''L'' : ''y'' = ''v''}
| + | & = & |
| − | |-
| + | \{ (x, y) \in L : y = v \} |
| − | |
| + | \\[6pt] |
| − | | =
| + | & = & |
| − | | the set of all ordered pairs in ''L'' incident with ''v'' in ''Y''.
| + | \text{the set of all ordered pairs in}~ L ~\text{incident with}~ v \in Y. |
| | + | \end{array}</math> |
| | |} | | |} |
| | | | |
| Line 3,874: |
Line 3,875: |
| | |} | | |} |
| | | | |
| − | The local flag ''E''<sub>3.''X''</sub> is displayed here: | + | The local flag <math>E_{3 \star X}</math> is displayed here: |
| | | | |
| | {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
| Line 3,889: |
Line 3,890: |
| | |} | | |} |
| | | | |
| − | The local flag ''E''<sub>2.''Y''</sub> is displayed here: | + | The local flag <math>E_{2 \star Y}</math> is displayed here: |
| | | | |
| | {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |