Line 3,907: |
Line 3,907: |
| ===Commentary Note 11.8=== | | ===Commentary Note 11.8=== |
| | | |
− | Now let's re-examine the ''numerical incidence properties'' of relations, concentrating on the definitions of the assorted regularity conditions.
| + | Next let's re-examine the ''numerical incidence properties'' of relations, concentrating on the definitions of the assorted regularity conditions. |
| | | |
− | {| align="center" cellspacing="6" width="90%" <!--QUOTE-->
| + | For instance, <math>L\!</math> is said to be <math>^{\backprime\backprime} c\text{-regular at}~ j \, ^{\prime\prime}</math> if and only if the cardinality of the local flag <math>L_{x \star j}</math> is equal to <math>c\!</math> for all <math>x \in X_j,</math> coded in symbols, if and only if <math>|L_{x \star j}| = c</math> for all <math>x \in X_j.</math> |
− | |
| |
− | <p>For instance, L is said to be "''c''-regular at ''j''" if and only if the cardinality of the local flag ''L''<sub>''x''.''j''</sub> is ''c'' for all ''x'' in ''X'<sub>''j''</sub>, coded in symbols, if and only if |''L''<sub>''x''.''j''</sub>| = ''c'' for all ''x'' in ''X<sub>''j''</sub>.</p> | |
| | | |
− | <p>In a similar fashion, one can define the NIP's "<''c''-regular at ''j''", ">''c''-regular at ''j''", and so on. For ease of reference, I record a few of these definitions here:</p>
| + | In a similar fashion, one can define the numerical incidence properties <math>^{\backprime\backprime}(< c)\text{-regular at}~ j \, ^{\prime\prime},</math> <math>^{\backprime\backprime}(> c)\text{-regular at}~ j \, ^{\prime\prime},</math> and so on. For ease of reference, I record a few of these definitions here: |
| | | |
− | :{| cellpadding="6"
| + | {| align="center" cellspacing="6" width="90%" |
− | | ''L'' is ''c''-regular at ''j'' | + | | |
− | | iff
| + | <math>\begin{array}{lll} |
− | | |''L''<sub>''x''.''j''</sub>| = ''c'' for all ''x'' in ''X''<sub>''j''</sub>. | + | L ~\text{is}~ c\text{-regular at}~ j |
− | |-
| + | & \iff & |
− | | ''L'' is (<''c'')-regular at ''j''
| + | |L_{x \star j}| = c ~\text{for all}~ x \in X_j. |
− | | iff
| + | \\[6pt] |
− | | |''L''<sub>''x''.''j''</sub>| < ''c'' for all ''x'' in ''X''<sub>''j''</sub>. | + | L ~\text{is}~ (< c)\text{-regular at}~ j |
− | |-
| + | & \iff & |
− | | L is (>''c'')-regular at ''j''
| + | |L_{x \star j}| < c ~\text{for all}~ x \in X_j. |
− | | iff
| + | \\[6pt] |
− | | |''L''<sub>''x''.''j''</sub>| > ''c'' for all ''x'' in ''X''<sub>''j''</sub>. | + | L ~\text{is}~ (> c)\text{-regular at}~ j |
− | |-
| + | & \iff & |
− | | L is (≤''c'')-regular at ''j''
| + | |L_{x \star j}| > c ~\text{for all}~ x \in X_j. |
− | | iff
| + | \\[6pt] |
− | | |''L''<sub>''x''.''j''</sub>| ≤ ''c'' for all ''x'' in ''X''<sub>''j''</sub>. | + | L ~\text{is}~ (\le c)\text{-regular at}~ j |
− | |-
| + | & \iff & |
− | | L is (≥''c'')-regular at ''j''
| + | |L_{x \star j}| \le c ~\text{for all}~ x \in X_j. |
− | | iff
| + | \\[6pt] |
− | | |''L''<sub>''x''.''j''</sub>| ≥ ''c'' for all ''x'' in ''X''<sub>''j''</sub>. | + | L ~\text{is}~ (\ge c)\text{-regular at}~ j |
− | |}
| + | & \iff & |
| + | |L_{x \star j}| \ge c ~\text{for all}~ x \in X_j. |
| + | \end{array}</math> |
| |} | | |} |
| | | |