Changes

MyWikiBiz, Author Your Legacy — Monday November 25, 2024
Jump to navigationJump to search
Line 3,907: Line 3,907:  
===Commentary Note 11.8===
 
===Commentary Note 11.8===
   −
Now let's re-examine the ''numerical incidence properties'' of relations, concentrating on the definitions of the assorted regularity conditions.
+
Next let's re-examine the ''numerical incidence properties'' of relations, concentrating on the definitions of the assorted regularity conditions.
   −
{| align="center" cellspacing="6" width="90%" <!--QUOTE-->
+
For instance, <math>L\!</math> is said to be <math>^{\backprime\backprime} c\text{-regular at}~ j \, ^{\prime\prime}</math> if and only if the cardinality of the local flag <math>L_{x \star j}</math> is equal to <math>c\!</math> for all <math>x \in X_j,</math> coded in symbols, if and only if <math>|L_{x \star j}| = c</math> for all <math>x \in X_j.</math>
|
  −
<p>For instance, L is said to be "''c''-regular at ''j''" if and only if the cardinality of the local flag ''L''<sub>''x''.''j''</sub> is ''c'' for all ''x'' in ''X'<sub>''j''</sub>, coded in symbols, if and only if |''L''<sub>''x''.''j''</sub>| = ''c'' for all ''x'' in ''X<sub>''j''</sub>.</p>
     −
<p>In a similar fashion, one can define the NIP's "&lt;''c''-regular at ''j''", "&gt;''c''-regular at ''j''", and so on.  For ease of reference, I record a few of these definitions here:</p>
+
In a similar fashion, one can define the numerical incidence properties <math>^{\backprime\backprime}(< c)\text{-regular at}~ j \, ^{\prime\prime},</math> <math>^{\backprime\backprime}(> c)\text{-regular at}~ j \, ^{\prime\prime},</math> and so on.  For ease of reference, I record a few of these definitions here:
   −
:{| cellpadding="6"
+
{| align="center" cellspacing="6" width="90%"
| ''L'' is ''c''-regular at ''j''
+
|
| iff
+
<math>\begin{array}{lll}
| &#124;''L''<sub>''x''.''j''</sub>&#124; = ''c'' for all ''x'' in ''X''<sub>''j''</sub>.
+
L ~\text{is}~ c\text{-regular at}~ j
|-
+
& \iff &
| ''L'' is (&lt;''c'')-regular at ''j''
+
|L_{x \star j}| = c ~\text{for all}~ x \in X_j.
| iff
+
\\[6pt]
| &#124;''L''<sub>''x''.''j''</sub>&#124; &lt; ''c'' for all ''x'' in ''X''<sub>''j''</sub>.
+
L ~\text{is}~ (< c)\text{-regular at}~ j
|-
+
& \iff &
| L is (&gt;''c'')-regular at ''j''
+
|L_{x \star j}| < c ~\text{for all}~ x \in X_j.
| iff
+
\\[6pt]
| &#124;''L''<sub>''x''.''j''</sub>&#124; &gt; ''c'' for all ''x'' in ''X''<sub>''j''</sub>.
+
L ~\text{is}~ (> c)\text{-regular at}~ j
|-
+
& \iff &
| L is (&le;''c'')-regular at ''j''
+
|L_{x \star j}| > c ~\text{for all}~ x \in X_j.
| iff
+
\\[6pt]
| &#124;''L''<sub>''x''.''j''</sub>&#124; &le; ''c'' for all ''x'' in ''X''<sub>''j''</sub>.
+
L ~\text{is}~ (\le c)\text{-regular at}~ j
|-
+
& \iff &
| L is (&ge;''c'')-regular at ''j''
+
|L_{x \star j}| \le c ~\text{for all}~ x \in X_j.
| iff
+
\\[6pt]
| &#124;''L''<sub>''x''.''j''</sub>&#124; &ge; ''c'' for all ''x'' in ''X''<sub>''j''</sub>.
+
L ~\text{is}~ (\ge c)\text{-regular at}~ j
|}
+
& \iff &
 +
|L_{x \star j}| \ge c ~\text{for all}~ x \in X_j.
 +
\end{array}</math>
 
|}
 
|}
  
12,080

edits

Navigation menu