Line 3,837:
Line 3,837:
|}
|}
−
In the case of a 2-adic relation <math>L \subseteq X_1 \times X_2 ~=~ X \times Y,</math> we can reap the benefits of a radical simplification in the definitions of the local flags. Also in this case, we tend to refer to <math>L_{u \star 1}</math> as <math>L_{u \star X}</math> and <math>L_{v \star 2}</math> as <math>L_{v \star Y}.</math>
+
In the case of a 2-adic relation <math>L \subseteq X_1 \times X_2 = X \times Y,</math> we can reap the benefits of a radical simplification in the definitions of the local flags. Also in this case, we tend to refer to <math>L_{u \star 1}</math> as <math>L_{u \star X}</math> and <math>L_{v \star 2}</math> as <math>L_{v \star Y}.</math>
−
In the light of these considerations, the local flags of a 2-adic relation ''L'' ⊆ ''X'' × ''Y'' may be formulated as follows:
+
In the light of these considerations, the local flags of a 2-adic relation <math>L \subseteq X \times Y</math> may be formulated as follows:
{| cellpadding="4"
{| cellpadding="4"
Line 3,859:
Line 3,859:
|}
|}
−
A sufficient illustration is supplied by the earlier example ''E''.
+
A sufficient illustration is supplied by the earlier example <math>E.\!</math>
+
{| align="center" cellspacing="6" width="90%"
+
|
<pre>
<pre>
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
Line 3,870:
Line 3,872:
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
</pre>
</pre>
+
|}
The local flag ''E''<sub>3.''X''</sub> is displayed here:
The local flag ''E''<sub>3.''X''</sub> is displayed here:
+
{| align="center" cellspacing="6" width="90%"
+
|
<pre>
<pre>
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
Line 3,882:
Line 3,887:
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
</pre>
</pre>
+
|}
The local flag ''E''<sub>2.''Y''</sub> is displayed here:
The local flag ''E''<sub>2.''Y''</sub> is displayed here:
+
{| align="center" cellspacing="6" width="90%"
+
|
<pre>
<pre>
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
Line 3,894:
Line 3,902:
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
</pre>
</pre>
+
|}
===Commentary Note 11.8===
===Commentary Note 11.8===