| Line 429: | Line 429: | 
|  | ==Functional Quantifiers== |  | ==Functional Quantifiers== | 
|  |  |  |  | 
| − | The ''umpire measure'' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> takes a proposition of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as argument, giving the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> a value of 1 and everything else a value of 0.  Expressed in symbolic form: | + | The ''umpire measure'' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> takes a single proposition of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as argument, giving the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> a value of 1 and everything else a value of 0.  Expressed in symbolic form: | 
|  |  |  |  | 
|  | {| align="center" cellpadding="8" |  | {| align="center" cellpadding="8" | 
| − | | <math>\Upsilon p = 1 \quad \Leftrightarrow \quad p = 1.</math> | + | | <math>\Upsilon \langle p \rangle = 1 \quad \Leftrightarrow \quad p = 1.</math> | 
|  | |} |  | |} | 
|  |  |  |  | 
| Line 445: | Line 445: | 
|  | The auxiliary notations: |  | The auxiliary notations: | 
|  |  |  |  | 
| − | : <math>\alpha_i f = \Upsilon (f_i, f) = \Upsilon(f_i \Rightarrow f)</math> | + | : <math>\alpha_i f = \Upsilon \langle f_i, f \rangle = \Upsilon \langle f_i \Rightarrow f \rangle</math> | 
|  |  |  |  | 
| − | : <math>\beta_i f = \Upsilon (f, f_i) = \Upsilon(f \Rightarrow f_i)</math> | + | : <math>\beta_i f = \Upsilon \langle f, f_i \rangle = \Upsilon \langle f \Rightarrow f_i \rangle</math> | 
|  |  |  |  | 
|  | define two series of measures: |  | define two series of measures: | 
| Line 456: | Line 456: | 
|  |  |  |  | 
|  | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |  | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | 
| − | |+ '''Table 1.  Qualifiers of Implication Ordering:  <math>\alpha_i f = \Upsilon (f_i \Rightarrow f)</math>''' | + | |+ '''Table 1.  Qualifiers of Implication Ordering:  <math>\alpha_i f = \Upsilon \langle f_i \Rightarrow f \rangle</math>''' | 
|  | |- style="background:ghostwhite" |  | |- style="background:ghostwhite" | 
|  | | align="right" | <math>p:</math><br><math>q:</math> |  | | align="right" | <math>p:</math><br><math>q:</math> | 
| Line 544: | Line 544: | 
|  |  |  |  | 
|  | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |  | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | 
| − | |+ '''Table 2.  Qualifiers of Implication Ordering:  <math>\beta_i f = \Upsilon (f \Rightarrow f_i)</math>''' | + | |+ '''Table 2.  Qualifiers of Implication Ordering:  <math>\beta_i f = \Upsilon \langle f \Rightarrow f_i \rangle</math>''' | 
|  | |- style="background:ghostwhite" |  | |- style="background:ghostwhite" | 
|  | | align="right" | <math>p:</math><br><math>q:</math> |  | | align="right" | <math>p:</math><br><math>q:</math> |