| Line 429: | Line 429: | 
|  | ==Functional Quantifiers== |  | ==Functional Quantifiers== | 
|  |  |  |  | 
| − | The ''umpire measure'' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> takes a single proposition of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as argument, giving the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> a value of 1 and everything else a value of 0.  Expressed in symbolic form: | + | The '''umpire measure''' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> takes a single proposition of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as argument, giving the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> a value of 1 and everything else a value of 0.  Expressed in symbolic form: | 
|  |  |  |  | 
|  | {| align="center" cellpadding="8" |  | {| align="center" cellpadding="8" | 
| Line 435: | Line 435: | 
|  | |} |  | |} | 
|  |  |  |  | 
| − | The ''umpire operator'' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math> takes two propositions of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as arguments, giving pairs in which the first implies the second a value of 1 and everything else a value of 0.  Expressed in symbolic form: | + | The '''umpire operator''' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math> takes two propositions of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as arguments, giving pairs in which the first implies the second a value of 1 and everything else a value of 0.  Expressed in symbolic form: | 
|  |  |  |  | 
|  | {| align="center" cellpadding="8" |  | {| align="center" cellpadding="8" | 
| Line 443: | Line 443: | 
|  | ===Tables=== |  | ===Tables=== | 
|  |  |  |  | 
| − | The auxiliary notations:
 | + | Define two families of measures: | 
|  |  |  |  | 
| − | : <math>\alpha_if = \Upsilon \langle f_i, f \rangle = \Upsilon \langle f_i \Rightarrow f \rangle</math>
 | + | {| align="center" cellpadding="8" | 
|  | + | | <math>\alpha_i, \beta_i : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}, i = 1 \ldots 15,</math> | 
|  | + | |} | 
|  |  |  |  | 
| − | : <math>\beta_i f = \Upsilon \langle f, f_i \rangle = \Upsilon \langle f \Rightarrow f_i \rangle</math> | + | by means of the following formulas: | 
|  |  |  |  | 
| − | define two series of measures:
 | + | {| align="center" cellpadding="8" | 
|  | + | | <math>\alpha_i f = \Upsilon \langle f_i, f \rangle = \Upsilon \langle f_i \Rightarrow f \rangle,</math> | 
|  | + | |- | 
|  | + | | <math>\beta_i f = \Upsilon \langle f, f_i \rangle = \Upsilon \langle f \Rightarrow f_i \rangle.</math> | 
|  | + | |} | 
|  |  |  |  | 
| − | : <math>\alpha_i, \beta_i :(\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B},</math>
 | + | The values of the sixteen <math>\alpha_i\!</math> on each of the sixteen boolean functions <math>f : \mathbb{B}^2 \to \mathbb{B}</math> are shown in Table 1. | 
| − |   |  | 
| − | incidentally providing compact names for the column headings of the next two Tables.
 |  | 
|  |  |  |  | 
|  | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |  | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | 
| Line 542: | Line 546: | 
|  | | 1    || 1    || 1    || 1    || 1    || 1    || 1    || 1 |  | | 1    || 1    || 1    || 1    || 1    || 1    || 1    || 1 | 
|  | |}<br> |  | |}<br> | 
|  | + |  | 
|  | + | The values of the sixteen <math>\beta_i\!</math> on each of the sixteen boolean functions <math>f : \mathbb{B}^2 \to \mathbb{B}</math> are shown in Table 2. | 
|  |  |  |  | 
|  | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |  | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |