MyWikiBiz, Author Your Legacy — Thursday November 14, 2024
Jump to navigationJump to search
17 bytes removed
, 20:15, 11 December 2008
Line 429: |
Line 429: |
| ==Functional Quantifiers== | | ==Functional Quantifiers== |
| | | |
− | The ''umpire measure'' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> evaluates propositions of type <math>\mathbb{B}^2 \to \mathbb{B},</math> assigning the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> a value of 1 and everything else a value of 0. Expressed in symbolic form: | + | The ''umpire measure'' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> takes a proposition of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as argument, giving the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> a value of 1 and everything else a value of 0. Expressed in symbolic form: |
| | | |
| {| align="center" cellpadding="8" | | {| align="center" cellpadding="8" |
Line 435: |
Line 435: |
| |} | | |} |
| | | |
− | The ''umpire operator'' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math> evaluates ordered pairs of propositions of type <math>\mathbb{B}^2 \to \mathbb{B},</math> assigning pairs of propositions in which the first implies the second a value of 1 and everything else a value of 0. Expressed in symbolic form: | + | The ''umpire operator'' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math> takes two propositions of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as arguments, giving pairs in which the first implies the second a value of 1 and everything else a value of 0. Expressed in symbolic form: |
| | | |
| {| align="center" cellpadding="8" | | {| align="center" cellpadding="8" |