Line 8,854:
Line 8,854:
Table 67 shows how to compute the analytic series for ''F'' = ‹''f'', ''g''› = ‹((''u'')(''v'')), ((''u'', ''v''))› in terms of coordinates, and Table 68 recaps these results in symbolic terms, agreeing with earlier derivations.
Table 67 shows how to compute the analytic series for ''F'' = ‹''f'', ''g''› = ‹((''u'')(''v'')), ((''u'', ''v''))› in terms of coordinates, and Table 68 recaps these results in symbolic terms, agreeing with earlier derivations.
−
<pre>
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
−
Table 67. Computation of an Analytic Series in Terms of Coordinates
+
|+ Table 67. Computation of an Analytic Series in Terms of Coordinates
−
o--------o-------o-------o--------o-------o-------o-------o-------o
+
|
−
| u v | du dv | u' v' | f g | Ef Eg | Df Dg | df dg | rf rg |
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
−
o--------o-------o-------o--------o-------o-------o-------o-------o
+
|
−
| | | | | | | | |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
−
| 0 0 | 0 0 | 0 0 | 0 1 | 0 1 | 0 0 | 0 0 | 0 0 |
+
| ''u''
−
| | | | | | | | |
+
| ''v''
−
| | 0 1 | 0 1 | | 1 0 | 1 1 | 1 1 | 0 0 |
+
|}
−
| | | | | | | | |
+
|
−
| | 1 0 | 1 0 | | 1 0 | 1 1 | 1 1 | 0 0 |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
−
| | | | | | | | |
+
| d''u''
−
| | 1 1 | 1 1 | | 1 1 | 1 0 | 0 0 | 1 0 |
+
| d''v''
−
| | | | | | | | |
+
|}
−
o--------o-------o-------o--------o-------o-------o-------o-------o
+
|
−
| | | | | | | | |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
−
| 0 1 | 0 0 | 0 1 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 |
+
| ''u''<font face="courier new">’</font>
−
| | | | | | | | |
+
| ''v''<font face="courier new">’</font>
−
| | 0 1 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 |
+
|}
−
| | | | | | | | |
+
|-
−
| | 1 0 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 |
+
| valign="top" |
−
| | | | | | | | |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
−
| | 1 1 | 1 0 | | 1 0 | 0 0 | 1 0 | 1 0 |
+
| 0 || 0
−
| | | | | | | | |
+
|}
−
o--------o-------o-------o--------o-------o-------o-------o-------o
+
|
−
| | | | | | | | |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
−
| 1 0 | 0 0 | 1 0 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 |
+
| 0 || 0
−
| | | | | | | | |
+
|-
−
| | 0 1 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 |
+
| 0 || 1
−
| | | | | | | | |
+
|-
−
| | 1 0 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 |
+
| 1 || 0
−
| | | | | | | | |
+
|-
−
| | 1 1 | 0 1 | | 1 0 | 0 0 | 1 0 | 1 0 |
+
| 1 || 1
−
| | | | | | | | |
+
|}
−
o--------o-------o-------o--------o-------o-------o-------o-------o
+
|
−
| | | | | | | | |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
−
| 1 1 | 0 0 | 1 1 | 1 1 | 1 1 | 0 0 | 0 0 | 0 0 |
+
| 0 || 0
−
| | | | | | | | |
+
|-
−
| | 0 1 | 1 0 | | 1 0 | 0 1 | 0 1 | 0 0 |
+
| 0 || 1
−
| | | | | | | | |
+
|-
−
| | 1 0 | 0 1 | | 1 0 | 0 1 | 0 1 | 0 0 |
+
| 1 || 0
−
| | | | | | | | |
+
|-
−
| | 1 1 | 0 0 | | 0 1 | 1 0 | 0 0 | 1 0 |
+
| 1 || 1
−
| | | | | | | | |
+
|}
−
o--------o-------o-------o--------o-------o-------o-------o-------o
+
|-
−
</pre>
+
| valign="top" |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 1
+
|-
+
| 1 || 0
+
|-
+
| 1 || 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 1
+
|-
+
| 0 || 0
+
|-
+
| 1 || 1
+
|-
+
| 1 || 0
+
|}
+
|-
+
| valign="top" |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 1
+
|-
+
| 1 || 0
+
|-
+
| 1 || 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 0
+
|-
+
| 1 || 1
+
|-
+
| 0 || 0
+
|-
+
| 0 || 1
+
|}
+
|-
+
| valign="top" |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 1
+
|-
+
| 1 || 0
+
|-
+
| 0 || 1
+
|-
+
| 0 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 1
+
|-
+
| 1 || 0
+
|-
+
| 1 || 1
+
|}
+
|}
+
|
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
| <math>\epsilon</math>''f''
+
| <math>\epsilon</math>''g''
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
| E''f''
+
| E''g''
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
| D''f''
+
| D''g''
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
| d''f''
+
| d''g''
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
| d<sup>2</sup>''f''
+
| d<sup>2</sup>''g''
+
|}
+
|-
+
| valign="top" |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 1
+
|-
+
| 1 || 0
+
|-
+
| 1 || 0
+
|-
+
| 1 || 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 1 || 1
+
|-
+
| 1 || 1
+
|-
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 1 || 1
+
|-
+
| 1 || 1
+
|-
+
| 0 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 0
+
|-
+
| 0 || 0
+
|-
+
| 1 || 0
+
|}
+
|-
+
| valign="top" |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 0
+
|-
+
| 0 || 1
+
|-
+
| 1 || 1
+
|-
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 1 || 1
+
|-
+
| 0 || 1
+
|-
+
| 0 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 1 || 1
+
|-
+
| 0 || 1
+
|-
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 0
+
|-
+
| 0 || 0
+
|-
+
| 1 || 0
+
|}
+
|-
+
| valign="top" |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 0
+
|-
+
| 1 || 1
+
|-
+
| 0 || 1
+
|-
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 1
+
|-
+
| 1 || 1
+
|-
+
| 0 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 1
+
|-
+
| 1 || 1
+
|-
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 0
+
|-
+
| 0 || 0
+
|-
+
| 1 || 0
+
|}
+
|-
+
| valign="top" |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 1
+
|-
+
| 1 || 0
+
|-
+
| 1 || 0
+
|-
+
| 0 || 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 1
+
|-
+
| 0 || 1
+
|-
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 1
+
|-
+
| 0 || 1
+
|-
+
| 0 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 0
+
|-
+
| 0 || 0
+
|-
+
| 1 || 0
+
|}
+
|}
+
|}
+
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"