Line 8,901:
Line 8,901:
</pre>
</pre>
−
<pre>
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
−
Table 68. Computation of an Analytic Series in Symbolic Terms
+
|+ '''Table 68. Computation of an Analytic Series in Symbolic Terms'''
−
o-----o-----o------------o----------o----------o----------o----------o----------o
+
|- style="background:paleturquoise"
−
| u v | f g | Df | Dg | df | dg | rf | rf |
+
| ''u'' ''v''
−
o-----o-----o------------o----------o----------o----------o----------o----------o
+
| ''f'' ''g''
−
| | | | | | | | |
+
| D''f''
−
| 0 0 | 0 1 | ((du)(dv)) | (du, dv) | (du, dv) | (du, dv) | du dv | () |
+
| D''g''
−
| | | | | | | | |
+
| d''f''
−
| 0 1 | 1 0 | (du) dv | (du, dv) | dv | (du, dv) | du dv | () |
+
| d''g''
−
| | | | | | | | |
+
| d<sup>2</sup>''f''
−
| 1 0 | 1 0 | du (dv) | (du, dv) | du | (du, dv) | du dv | () |
+
| d<sup>2</sup>''g''
−
| | | | | | | | |
+
|-
−
| 1 1 | 1 1 | du dv | (du, dv) | () | (du, dv) | du dv | () |
+
|
−
| | | | | | | | |
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
−
o-----o-----o------------o----------o----------o----------o----------o----------o
+
| 0 0
−
</pre>
+
|-
+
| 0 1
+
|-
+
| 1 0
+
|-
+
| 1 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 1
+
|-
+
| 1 0
+
|-
+
| 1 0
+
|-
+
| 1 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| ((d''u'')(d''v''))
+
|-
+
| (d''u'') d''v''
+
|-
+
| d''u'' (d''v'')
+
|-
+
| d''u'' d''v''
+
|}
+
|
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| (d''u'', d''v'')
+
|-
+
| (d''u'', d''v'')
+
|-
+
| (d''u'', d''v'')
+
|-
+
| (d''u'', d''v'')
+
|}
+
|
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| (d''u'', d''v'')
+
|-
+
| d''v''
+
|-
+
| d''u''
+
|-
+
| ( )
+
|}
+
|
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| (d''u'', d''v'')
+
|-
+
| (d''u'', d''v'')
+
|-
+
| (d''u'', d''v'')
+
|-
+
| (d''u'', d''v'')
+
|}
+
|
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| d''u'' d''v''
+
|-
+
| d''u'' d''v''
+
|-
+
| d''u'' d''v''
+
|-
+
| d''u'' d''v''
+
|}
+
|
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| ( )
+
|-
+
| ( )
+
|-
+
| ( )
+
|-
+
| ( )
+
|}
+
|}
+
<br>
Figure 69 gives a graphical picture of the difference map D''F'' = ‹D''f'', D''g''› for the transformation ''F'' = ‹''f'', ''g''› = ‹((''u'')(''v'')), ((''u'', ''v''))›. This depicts the same information about D''f'' and D''g'' that was given in the corresponding rows of the computation summary in Tables 66-i and 66-ii, excerpted here:
Figure 69 gives a graphical picture of the difference map D''F'' = ‹D''f'', D''g''› for the transformation ''F'' = ‹''f'', ''g''› = ‹((''u'')(''v'')), ((''u'', ''v''))›. This depicts the same information about D''f'' and D''g'' that was given in the corresponding rows of the computation summary in Tables 66-i and 66-ii, excerpted here: