Line 7,882:
Line 7,882:
|}<br>
|}<br>
−
<pre>
+
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; text-align:left; width:96%"
−
Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes
+
|+ '''Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes'''
−
o--------------o----------------------o--------------------o----------------------o
+
|- style="background:paleturquoise"
−
| | Operator | Proposition | Transformation |
+
|
−
| | or | or | or |
+
| align="center" | '''Operator<br>or<br>Operand'''
−
| | Operand | Component | Mapping |
+
| align="center" | '''Proposition<br>or<br>Component'''
−
o--------------o----------------------o--------------------o----------------------o
+
| align="center" | '''Transformation<br>or<br>Mapping'''
−
| | | | |
+
|-
−
| Operand | F = <F_1, F_2> | F_i : <|u,v|> -> B | F : [u, v] -> [x, y] |
+
| valign="top" | Operand
−
| | | | |
+
| valign="top" |
−
| | F = <f, g> : U -> X | F_i : B^n -> B | F : B^n -> B^k |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| | | | |
+
| ''F'' = ‹''F''<sub>1</sub>, ''F''<sub>2</sub>›
−
o--------------o----------------------o--------------------o----------------------o
+
|-
−
| | | | |
+
| ''F'' = ‹''f'', ''g''› : ''U'' → ''X''
−
| Tacit | !e! : | !e!F_i : | !e!F : |
+
|}
−
| Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> B | [u,v,du,dv]->[x, y] |
+
| valign="top" |
−
| | (U%->X%)->(EU%->X%) | B^n x D^n -> B | [B^n x D^n]->[B^k] |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| | | | |
+
| ''F''<sub>''i''</sub> : 〈''u'', ''v''〉 → '''B'''
−
o--------------o----------------------o--------------------o----------------------o
+
|-
−
| | | | |
+
| ''F''<sub>''i''</sub> : '''B'''<sup>''n''</sup> → '''B'''
−
| Trope | !h! : | !h!F_i : | !h!F : |
+
|}
−
| Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
+
| valign="top" |
−
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
−
| | | | |
+
| ''F'' : [''u'', ''v''] → [''x'', ''y'']
−
o--------------o----------------------o--------------------o----------------------o
+
|-
−
| | | | |
+
| ''F'' : '''B'''<sup>''n''</sup> → '''B'''<sup>''k''</sup>
−
| Enlargement | E : | EF_i : | EF : |
+
|}
−
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
+
|-
−
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
+
|
−
| | | | |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
o--------------o----------------------o--------------------o----------------------o
+
| Tacit
−
| | | | |
+
|-
−
| Difference | D : | DF_i : | DF : |
+
| Extension
−
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
+
|}
−
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
+
|
−
| | | | |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
o--------------o----------------------o--------------------o----------------------o
+
| <math>\epsilon</math> :
−
| | | | |
+
|-
−
| Differential | d : | dF_i : | dF : |
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
−
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
+
|-
−
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → ''X''<sup> •</sup>)
−
| | | | |
+
|}
−
o--------------o----------------------o--------------------o----------------------o
+
|
−
| | | | |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| Remainder | r : | rF_i : | rF : |
+
| <math>\epsilon</math>''F''<sub>''i''</sub> :
−
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
+
|-
−
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''B'''
−
| | | | |
+
|-
−
o--------------o----------------------o--------------------o----------------------o
+
| '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''B'''
−
| | | | |
+
|}
−
| Radius | $e$ = <!e!, !h!> : | | $e$F : |
+
|
−
| Operator | | | |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
+
| <math>\epsilon</math>''F'' :
−
| | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
+
|-
−
| | | | |
+
| [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'']
−
| | | | [B^n x D^n] -> |
+
|-
−
| | | | [B^k x D^k] |
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>]
−
| | | | |
+
|}
−
o--------------o----------------------o--------------------o----------------------o
+
|-
−
| | | | |
+
|
−
| Secant | $E$ = <!e!, E> : | | $E$F : |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| Operator | | | |
+
| Trope
−
| | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
+
|-
−
| | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
+
| Extension
−
| | | | |
+
|}
−
| | | | [B^n x D^n] -> |
+
|
−
| | | | [B^k x D^k] |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| | | | |
+
| <math>\eta</math> :
−
o--------------o----------------------o--------------------o----------------------o
+
|-
−
| | | | |
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
−
| Chord | $D$ = <!e!, D> : | | $D$F : |
+
|-
−
| Operator | | | |
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
−
| | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
+
|}
−
| | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
+
|
−
| | | | |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| | | | [B^n x D^n] -> |
+
| <math>\eta</math>''F''<sub>''i''</sub> :
−
| | | | [B^k x D^k] |
+
|-
−
| | | | |
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
−
o--------------o----------------------o--------------------o----------------------o
+
|-
−
| | | | |
+
| '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D'''
−
| Tangent | $T$ = <!e!, d> : | dF_i : | $T$F : |
+
|}
−
| Functor | | | |
+
|
−
| | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u, v, du, dv] -> |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
+
| <math>\eta</math>''F'' :
−
| | | | |
+
|-
−
| | | B^n x D^n -> D | [B^n x D^n] -> |
+
| [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y'']
−
| | | | [B^k x D^k] |
+
|-
−
| | | | |
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>]
−
o--------------o----------------------o--------------------o----------------------o
+
|}
−
</pre>
+
|-
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| Enlargement
+
|-
+
| Operator
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| E :
+
|-
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
+
|-
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| E''F''<sub>''i''</sub> :
+
|-
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
+
|-
+
| '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D'''
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| E''F'' :
+
|-
+
| [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y'']
+
|-
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>]
+
|}
+
|-
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| Difference
+
|-
+
| Operator
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| D :
+
|-
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
+
|-
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| D''F''<sub>''i''</sub> :
+
|-
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
+
|-
+
| '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D'''
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| D''F'' :
+
|-
+
| [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y'']
+
|-
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>]
+
|}
+
|-
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| Differential
+
|-
+
| Operator
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| d :
+
|-
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
+
|-
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| d''F''<sub>''i''</sub> :
+
|-
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
+
|-
+
| '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D'''
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| d''F'' :
+
|-
+
| [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y'']
+
|-
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>]
+
|}
+
|-
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| Remainder
+
|-
+
| Operator
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| r :
+
|-
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
+
|-
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| r''F''<sub>''i''</sub> :
+
|-
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
+
|-
+
| '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D'''
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| r''F'' :
+
|-
+
| [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y'']
+
|-
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>]
+
|}
+
|-
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| Radius
+
|-
+
| Operator
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› :
+
|-
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
+
|-
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>)
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
|
+
|-
+
|
+
|-
+
|
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| <font face=georgia>'''e'''</font>''F'' :
+
|-
+
| [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y'']
+
|-
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
+
|}
+
|-
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| Secant
+
|-
+
| Operator
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› :
+
|-
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
+
|-
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>)
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
|
+
|-
+
|
+
|-
+
|
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| <font face=georgia>'''E'''</font>''F'' :
+
|-
+
| [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y'']
+
|-
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
+
|}
+
|-
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| Chord
+
|-
+
| Operator
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› :
+
|-
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
+
|-
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>)
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
|
+
|-
+
|
+
|-
+
|
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| <font face=georgia>'''D'''</font>''F'' :
+
|-
+
| [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y'']
+
|-
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
+
|}
+
|-
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| Tangent
+
|-
+
| Functor
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› :
+
|-
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
+
|-
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>)
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| d''F''<sub>''i''</sub> :
+
|-
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
+
|-
+
| '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D'''
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| <font face=georgia>'''T'''</font>''F'' :
+
|-
+
| [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y'']
+
|-
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
+
|}
+
|}<br>
===Transformations of Type '''B'''<sup>2</sup> → '''B'''<sup>2</sup>===
===Transformations of Type '''B'''<sup>2</sup> → '''B'''<sup>2</sup>===