Line 7,671:
Line 7,671:
But that's it, and no further. Neglect of these distinctions in range and target universes of higher dimensions is bound to cause a hopeless confusion. To guard against these adverse prospects, Tables 58 and 59 lay the groundwork for discussing a typical map ''F'' : ['''B'''<sup>2</sup>] → ['''B'''<sup>2</sup>], and begin to pave the way, to some extent, for discussing any transformation of the form ''F'' : ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>].
But that's it, and no further. Neglect of these distinctions in range and target universes of higher dimensions is bound to cause a hopeless confusion. To guard against these adverse prospects, Tables 58 and 59 lay the groundwork for discussing a typical map ''F'' : ['''B'''<sup>2</sup>] → ['''B'''<sup>2</sup>], and begin to pave the way, to some extent, for discussing any transformation of the form ''F'' : ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>].
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%"
+
<pre>
−
|+ '''Table 58. Cast of Characters: Expansive Subtypes of Objects and Operators'''
+
Table 58. Cast of Characters: Expansive Subtypes of Objects and Operators
−
|- style="background:paleturquoise"
+
o------o-------------------------o------------------o----------------------------o
−
! Item
+
| Item | Notation | Description | Type |
−
! Notation
+
o------o-------------------------o------------------o----------------------------o
−
! Description
+
| | | | |
−
! Type
+
| U% | = [u, v] | Source Universe | [B^n] |
−
|-
+
| | | | |
−
| valign="top" | ''U''<sup> •</sup>
+
o------o-------------------------o------------------o----------------------------o
−
| valign="top" | <font face="courier new">= </font>[''u'', ''v'']
+
| | | | |
−
| valign="top" | Source Universe
+
| X% | = [x, y] | Target Universe | [B^k] |
−
| valign="top" | ['''B'''<sup>''n''</sup>]
+
| | = [f, g] | | |
−
|-
+
| | | | |
−
| valign="top" | ''X''<sup> •</sup>
+
o------o-------------------------o------------------o----------------------------o
−
| valign="top" |
+
| | | | |
−
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| EU% | = [u, v, du, dv] | Extended | [B^n x D^n] |
−
| <font face="courier new">= </font>[''x'', ''y'']
+
| | | Source Universe | |
−
|-
+
| | | | |
−
| <font face="courier new">= </font>[''f'', ''g'']
+
o------o-------------------------o------------------o----------------------------o
−
|}
+
| | | | |
−
| valign="top" | Target Universe
+
| EX% | = [x, y, dx, dy] | Extended | [B^k x D^k] |
−
| valign="top" | ['''B'''<sup>''k''</sup>]
+
| | = [f, g, df, dg] | Target Universe | |
−
|-
+
| | | | |
−
| valign="top" | E''U''<sup> •</sup>
+
o------o-------------------------o------------------o----------------------------o
−
| valign="top" | <font face="courier new">= </font>[''u'', ''v'', d''u'', d''v'']
+
| | | | |
−
| valign="top" | Extended Source Universe
+
| F | F = <f, g> : U% -> X% | Transformation, | [B^n] -> [B^k] |
−
| valign="top" | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>]
+
| | | or Mapping | |
−
|-
+
| | | | |
−
| valign="top" | E''X''<sup> •</sup>
+
o------o-------------------------o------------------o----------------------------o
−
| valign="top" |
+
| | | | |
−
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| | f, g : U -> B | Proposition, | B^n -> B |
−
| <font face="courier new">= </font>[''x'', ''y'', d''x'', d''y'']
+
| | | special case | |
−
|-
+
| f | f : U -> [x] c X% | of a mapping, | c (B^n, B^n -> B) |
−
| <font face="courier new">= </font>[''f'', ''g'', d''f'', d''g'']
+
| | | or component | |
−
|}
+
| g | g : U -> [y] c X% | of a mapping. | = (B^n +-> B) = [B^n] |
−
| valign="top" | Extended Target Universe
+
| | | | |
−
| valign="top" | ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
+
o------o-------------------------o------------------o----------------------------o
−
|-
+
| | | | |
−
| ''F''
+
| W | W : | Operator | |
−
| ''F'' = ‹''f'', ''g''› : ''U''<sup> •</sup> → ''X''<sup> •</sup>
+
| | U% -> EU%, | | [B^n] -> [B^n x D^n], |
−
| Transformation, or Mapping
+
| | X% -> EX%, | | [B^k] -> [B^k x D^k], |
−
| ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>]
+
| | (U%->X%)->(EU%->EX%), | | ([B^n] -> [B^k]) |
−
|-
+
| | for each W among: | | -> |
−
| valign="top" |
+
| | !e!, !h!, E, D, d | | ([B^n x D^n]->[B^k x D^k]) |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| | | | |
−
|
+
o------o-------------------------o------------------o----------------------------o
−
|-
+
| | | |
−
| ''f''
+
| !e! | | Tacit Extension Operator !e! |
−
|-
+
| !h! | | Trope Extension Operator !h! |
−
| ''g''
+
| E | | Enlargement Operator E |
−
|}
+
| D | | Difference Operator D |
−
| valign="top" |
+
| d | | Differential Operator d |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| | | |
−
| ''f'', ''g'' : ''U'' → '''B'''
+
o------o-------------------------o------------------o----------------------------o
−
|-
+
| | | | |
−
| ''f'' : ''U'' → [''x''] ⊆ ''X''<sup> •</sup>
+
| $W$ | $W$ : | Operator | |
−
|-
+
| | U% -> $T$U% = EU%, | | [B^n] -> [B^n x D^n], |
−
| ''g'' : ''U'' → [''y''] ⊆ ''X''<sup> •</sup>
+
| | X% -> $T$X% = EX%, | | [B^k] -> [B^k x D^k], |
−
|}
+
| | (U%->X%)->($T$U%->$T$X%)| | ([B^n] -> [B^k]) |
−
| valign="top" |
+
| | for each $W$ among: | | -> |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| | $e$, $E$, $D$, $T$ | | ([B^n x D^n]->[B^k x D^k]) |
−
| Proposition
+
| | | | |
−
|}
+
o------o-------------------------o------------------o----------------------------o
−
| valign="top" |
+
| | | |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
+
| $e$ | | Radius Operator $e$ = <!e!, !h!> |
−
| '''B'''<sup>''n''</sup> → '''B'''
+
| $E$ | | Secant Operator $E$ = <!e!, E > |
−
|-
+
| $D$ | | Chord Operator $D$ = <!e!, D > |
−
| ∈ ('''B'''<sup>''n''</sup>, '''B'''<sup>''n''</sup> → '''B''')
+
| $T$ | | Tangent Functor $T$ = <!e!, d > |
−
|-
+
| | | |
−
| = ('''B'''<sup>''n''</sup> +→ '''B''') = ['''B'''<sup>''n''</sup>]
+
o------o-------------------------o-----------------------------------------------o
−
|}
+
</pre>
−
|-
+
−
| valign="top" |
+
<pre>
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes
−
| W
+
o--------------o----------------------o--------------------o----------------------o
−
|}
+
| | Operator | Proposition | Transformation |
−
| valign="top" |
+
| | or | or | or |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| | Operand | Component | Mapping |
−
| W :
+
o--------------o----------------------o--------------------o----------------------o
−
|-
+
| | | | |
−
| ''U''<sup> •</sup> → E''U''<sup> •</sup> ,
+
| Operand | F = <F_1, F_2> | F_i : <|u,v|> -> B | F : [u, v] -> [x, y] |
−
|-
+
| | | | |
−
| ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
+
| | F = <f, g> : U -> X | F_i : B^n -> B | F : B^n -> B^k |
−
|-
+
| | | | |
−
| (''U''<sup> •</sup> → ''X''<sup> •</sup>)
+
o--------------o----------------------o--------------------o----------------------o
−
|-
+
| | | | |
−
| →
+
| Tacit | !e! : | !e!F_i : | !e!F : |
−
|-
+
| Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> B | [u,v,du,dv]->[x, y] |
−
| (E''U''<sup> •</sup> → E''X''<sup> •</sup>) ,
+
| | (U%->X%)->(EU%->X%) | B^n x D^n -> B | [B^n x D^n]->[B^k] |
−
|-
+
| | | | |
−
| for each W in the set:
+
o--------------o----------------------o--------------------o----------------------o
−
|-
+
| | | | |
−
| {<math>\epsilon</math>, <math>\eta</math>, E, D, d}
+
| Trope | !h! : | !h!F_i : | !h!F : |
−
|}
+
| Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
−
| valign="top" |
+
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| | | | |
−
| Operator
+
o--------------o----------------------o--------------------o----------------------o
−
|}
+
| | | | |
−
| valign="top" |
+
| Enlargement | E : | EF_i : | EF : |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
+
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
−
|
+
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
−
|-
+
| | | | |
−
| ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] ,
+
o--------------o----------------------o--------------------o----------------------o
−
|-
+
| | | | |
−
| ['''B'''<sup>''k''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] ,
+
| Difference | D : | DF_i : | DF : |
−
|-
+
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
−
| (['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>])
+
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
−
|-
+
| | | | |
−
| →
+
o--------------o----------------------o--------------------o----------------------o
−
|-
+
| | | | |
−
| (['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>])
+
| Differential | d : | dF_i : | dF : |
−
|-
+
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
−
|
+
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
−
|-
+
| | | | |
−
|
+
o--------------o----------------------o--------------------o----------------------o
−
|}
+
| | | | |
−
|-
+
| Remainder | r : | rF_i : | rF : |
−
|
+
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
−
| <math>\epsilon</math>
+
| | | | |
−
|-
+
o--------------o----------------------o--------------------o----------------------o
−
| <math>\eta</math>
+
| | | | |
−
|-
+
| Radius | $e$ = <!e!, !h!> : | | $e$F : |
−
| E
+
| Operator | | | |
−
|-
+
| | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
−
| D
+
| | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
−
|-
+
| | | | |
−
| d
+
| | | | [B^n x D^n] -> |
−
|}
+
| | | | [B^k x D^k] |
−
| valign="top" |
+
| | | | |
−
| colspan="2" |
+
o--------------o----------------------o--------------------o----------------------o
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%"
+
| | | | |
−
| Tacit Extension Operator || <math>\epsilon</math>
+
| Secant | $E$ = <!e!, E> : | | $E$F : |
−
|-
+
| Operator | | | |
−
| Trope Extension Operator || <math>\eta</math>
+
| | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
−
|-
+
| | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
−
| Enlargement Operator || E
+
| | | | |
−
|-
+
| | | | [B^n x D^n] -> |
−
| Difference Operator || D
+
| | | | [B^k x D^k] |
−
|-
+
| | | | |
−
| Differential Operator || d
+
o--------------o----------------------o--------------------o----------------------o
−
|}
+
| | | | |
−
|-
+
| Chord | $D$ = <!e!, D> : | | $D$F : |
−
| valign="top" |
+
| Operator | | | |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
−
| <font face=georgia>'''W'''</font>
+
| | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
−
|}
+
| | | | |
−
| valign="top" |
+
| | | | [B^n x D^n] -> |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| | | | [B^k x D^k] |
−
| <font face=georgia>'''W'''</font> :
+
| | | | |
−
|-
+
o--------------o----------------------o--------------------o----------------------o
−
| ''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''U''<sup> •</sup> = E''U''<sup> •</sup> ,
+
| | | | |
−
|-
+
| Tangent | $T$ = <!e!, d> : | dF_i : | $T$F : |
−
| ''X''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup> = E''X''<sup> •</sup> ,
+
| Functor | | | |
−
|-
+
| | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u, v, du, dv] -> |
−
| (''U''<sup> •</sup> → ''X''<sup> •</sup>)
+
| | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
−
|-
+
| | | | |
−
| →
+
| | | B^n x D^n -> D | [B^n x D^n] -> |
−
|-
+
| | | | [B^k x D^k] |
−
| (<font face=georgia>'''T'''</font>''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup>) ,
+
| | | | |
−
|-
+
o--------------o----------------------o--------------------o----------------------o
−
| for each <font face=georgia>'''W'''</font> in the set:
+
</pre>
−
|-
−
| {<font face=georgia>'''e'''</font>, <font face=georgia>'''E'''</font>, <font face=georgia>'''D'''</font>, <font face=georgia>'''T'''</font>}
−
|}
−
| valign="top" |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| Operator
−
|}
−
| valign="top" |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
−
|
−
|-
−
| ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] ,
−
|-
−
| ['''B'''<sup>''k''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] ,
−
|-
−
| (['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>])
−
|-
−
| →
−
|-
−
| (['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>])
−
|-
−
|
−
|-
−
|
−
|}
−
|-
−
|
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| <font face=georgia>'''e'''</font>
−
|-
−
| <font face=georgia>'''E'''</font>
−
|-
−
| <font face=georgia>'''D'''</font>
−
|-
−
| <font face=georgia>'''T'''</font>
−
|}
−
| valign="top" |
−
| colspan="2" |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%"
−
| Radius Operator || <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>›
−
|-
−
| Secant Operator || <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E›
−
|-
−
| Chord Operator || <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D›
−
|-
−
| Tangent Functor || <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d›
−
|}
−
|}<br>
===Transformations of Type '''B'''<sup>2</sup> → '''B'''<sup>2</sup>===
===Transformations of Type '''B'''<sup>2</sup> → '''B'''<sup>2</sup>===