Line 7,256:
Line 7,256:
The component notation ''F'' = ‹''F''<sub>1</sub>, ''F''<sub>2</sub>› = ‹''f'', ''g''› : ''U''<sup> •</sup> → ''X''<sup> •</sup> allows us to give a name and a type to this transformation, and permits us to define it by means of the compact description that follows:
The component notation ''F'' = ‹''F''<sub>1</sub>, ''F''<sub>2</sub>› = ‹''f'', ''g''› : ''U''<sup> •</sup> → ''X''<sup> •</sup> allows us to give a name and a type to this transformation, and permits us to define it by means of the compact description that follows:
−
<pre>
+
<br><font face="courier new">
−
o-----------------------------------------------------------o
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
−
| |
+
|
−
| <x, y> = F<u, v> = <((u)(v)), ((u, v))> |
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
−
| |
+
| ‹''x'', ''y''›
−
o-----------------------------------------------------------o
+
| =
−
</pre>
+
| ''F''‹''u'', ''v''›
+
| =
+
| ‹((''u'')(''v'')), ((''u'', ''v''))›
+
|}
+
|}
+
</font><br>
The information that defines the logical transformation ''F'' can be represented in the form of a truth table, as in Table 60. To cut down on subscripts in this example I continue to use plain letter equivalents for all components of spaces and maps.
The information that defines the logical transformation ''F'' can be represented in the form of a truth table, as in Table 60. To cut down on subscripts in this example I continue to use plain letter equivalents for all components of spaces and maps.