Changes

MyWikiBiz, Author Your Legacy — Friday November 22, 2024
Jump to navigationJump to search
update
Line 7,030: Line 7,030:  
<br>
 
<br>
   −
But these initial formulas are purely definitional, and help us little in understanding either the purpose of the operators or the meaning of their results.  Working symbolically, let us apply the same method to the separate components <math>f\!</math> and <math>g\!</math> that we earlier used on <math>J.\!</math>  This work is recorded in Appendix&nbsp;1 and a summary of the results is presented in Tables&nbsp;66-i and 66-ii.
+
But these initial formulas are purely definitional, and help us little in understanding either the purpose of the operators or the meaning of their results.  Working symbolically, let us apply the same method to the separate components <math>f\!</math> and <math>g\!</math> that we earlier used on <math>J.\!</math>  This work is recorded in Appendix&nbsp;3 and a summary of the results is presented in Tables&nbsp;66-i and 66-ii.
    
<br>
 
<br>
Line 8,909: Line 8,909:  
<br>
 
<br>
   −
====Differential Forms====
+
===Appendix 2. Differential Forms===
    
The actions of the difference operator <math>\mathrm{D}\!</math> and the tangent operator <math>\mathrm{d}\!</math> on the 16 bivariate propositions are shown in Tables&nbsp;A7 and A8.
 
The actions of the difference operator <math>\mathrm{D}\!</math> and the tangent operator <math>\mathrm{d}\!</math> on the 16 bivariate propositions are shown in Tables&nbsp;A7 and A8.
Line 9,280: Line 9,280:  
<br>
 
<br>
   −
====Table A9. Differential = Pointwise Linear Approximation to the Difference====
+
====Table A9. Tangent Proposition as Pointwise Linear Approximation====
 
  −
====Table A10. Taylor Series Expansion====
      
<br>
 
<br>
   −
{| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:center; width:90%"
+
{| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%"
|+ style="height:30px" |
+
|+ style="height:30px" | <math>\text{Table A9.} ~~ \text{Tangent Proposition}~ \mathrm{d}f = \text{Pointwise Linear Approximation to the Difference Map}~ \mathrm{D}f\!</math>
<math>\text{Table A10.} ~~ \text{Taylor Series Expansion}~ {\mathrm{D}f = \mathrm{d}f + \mathrm{d}^2\!f}\!</math>
   
|- style="background:ghostwhite; height:40px"
 
|- style="background:ghostwhite; height:40px"
 
| style="border-right:none" | <math>f\!</math>
 
| style="border-right:none" | <math>f\!</math>
 
| style="border-left:4px double black" |
 
| style="border-left:4px double black" |
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\mathrm{D}f
+
\mathrm{d}f =
\\
+
\\[2pt]
= & \mathrm{d}f & + & \mathrm{d}^2\!f
+
\partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y
\\
+
\end{matrix}</math>
= & \partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y & + & \partial_{xy} f \cdot \mathrm{d}x\;\mathrm{d}y
+
|
\end{matrix}\!</math>
+
<math>\begin{matrix}
 +
\mathrm{d}^2\!f =
 +
\\[2pt]
 +
\partial_{xy} f \cdot \mathrm{d}x\;\mathrm{d}y
 +
\end{matrix}</math>
 
| <math>\mathrm{d}f|_{x \, y}</math>
 
| <math>\mathrm{d}f|_{x \, y}</math>
 
| <math>\mathrm{d}f|_{x \, \texttt{(} y \texttt{)}}</math>
 
| <math>\mathrm{d}f|_{x \, \texttt{(} y \texttt{)}}</math>
Line 9,306: Line 9,307:  
| style="border-right:none" | <math>f_0\!</math>
 
| style="border-right:none" | <math>f_0\!</math>
 
| style="border-left:4px double black" | <math>0\!</math>
 
| style="border-left:4px double black" | <math>0\!</math>
 +
| <math>0\!</math>
 
| <math>0\!</math>
 
| <math>0\!</math>
 
| <math>0\!</math>
 
| <math>0\!</math>
Line 9,311: Line 9,313:  
| <math>0\!</math>
 
| <math>0\!</math>
 
|-
 
|-
| style="border-right:none" | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}\!</math>
+
| style="border-right:none" |
 +
<math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}\!</math>
 
| style="border-left:4px double black" |
 
| style="border-left:4px double black" |
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + &
+
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y
\texttt{(} x \texttt{)} \cdot \mathrm{d}y & + &
  −
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
   
\\
 
\\
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y
\texttt{(} x \texttt{)} \cdot \mathrm{d}y & + &
  −
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
   
\\
 
\\
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + &
+
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y
\texttt{~} x \texttt{~} \cdot \mathrm{d}y & + &
  −
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
   
\\
 
\\
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y
\texttt{~} x \texttt{~} \cdot \mathrm{d}y & + &
  −
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
   
\end{matrix}</math>
 
\end{matrix}</math>
 
|
 
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
+
\mathrm{d}x\;\mathrm{d}y
\end{matrix}</math>
+
\\
|
+
\mathrm{d}x\;\mathrm{d}y
<math>\begin{matrix}
+
\\
\mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y
+
\mathrm{d}x\;\mathrm{d}y
\end{matrix}</math>
+
\\
|
+
\mathrm{d}x\;\mathrm{d}y
<math>\begin{matrix}
  −
\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x
  −
\end{matrix}</math>
  −
|
  −
<math>\begin{matrix}
  −
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0
   
\end{matrix}</math>
 
\end{matrix}</math>
 +
| <math>\begin{matrix}0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math>
 +
| <math>\begin{matrix}\mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\end{matrix}</math>
 +
| <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x\end{matrix}</math>
 +
| <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0\end{matrix}</math>
 +
|-
 +
| style="border-right:none" |
 +
<math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math>
 +
| style="border-left:4px double black" |
 +
<math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math>
 +
| <math>\begin{matrix}0\\0\end{matrix}</math>
 +
| <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math>
 +
| <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math>
 +
| <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math>
 +
| <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math>
 +
|-
 +
| style="border-right:none" |
 +
<math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math>
 +
| style="border-left:4px double black" |
 +
<math>\begin{matrix}\mathrm{d}x & + & \mathrm{d}y\\\mathrm{d}x & + & \mathrm{d}y\end{matrix}</math>
 +
| <math>\begin{matrix}0\\0\end{matrix}</math>
 +
| <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math>
 +
| <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math>
 +
| <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math>
 +
| <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math>
 +
|-
 +
| style="border-right:none" |
 +
<math>\begin{matrix}f_{5}\\f_{10}\end{matrix}\!</math>
 +
| style="border-left:4px double black" |
 +
<math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math>
 +
| <math>\begin{matrix}0\\0\end{matrix}</math>
 +
| <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math>
 +
| <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math>
 +
| <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math>
 +
| <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math>
 
|-
 
|-
| style="border-right:none" | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math>
+
| style="border-right:none" |
 +
<math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math>
 
| style="border-left:4px double black" |
 
| style="border-left:4px double black" |
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + &
+
\\
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y
 +
\\
 +
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y
 +
\\
 +
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y
 +
\end{matrix}\!</math>
 +
| <math>\begin{matrix}
 +
\mathrm{d}x\;\mathrm{d}y
 +
\\
 +
\mathrm{d}x\;\mathrm{d}y
 +
\\
 +
\mathrm{d}x\;\mathrm{d}y
 
\\
 
\\
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + &
+
\mathrm{d}x\;\mathrm{d}y
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + &
  −
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
   
\end{matrix}</math>
 
\end{matrix}</math>
|
+
| <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0\end{matrix}</math>
 +
| <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x\end{matrix}</math>
 +
| <math>\begin{matrix}\mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\end{matrix}</math>
 +
| <math>\begin{matrix}0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math>
 +
|-
 +
| style="border-right:none" | <math>f_{15}\!</math>
 +
| style="border-left:4px double black" | <math>0\!</math>
 +
| <math>0\!</math>
 +
| <math>0\!</math>
 +
| <math>0\!</math>
 +
| <math>0\!</math>
 +
| <math>0\!</math>
 +
|}
 +
 
 +
<br>
 +
 
 +
====Table A10. Taylor Series Expansion Df = d''f'' + d<sup>2</sup>''f''====
 +
 
 +
<br>
 +
 
 +
{| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:center; width:90%"
 +
|+ style="height:30px" |
 +
<math>\text{Table A10.} ~~ \text{Taylor Series Expansion}~ {\mathrm{D}f = \mathrm{d}f + \mathrm{d}^2\!f}\!</math>
 +
|- style="background:ghostwhite; height:40px"
 +
| style="border-right:none" | <math>f\!</math>
 +
| style="border-left:4px double black" |
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\mathrm{d}x\\\mathrm{d}x
+
\mathrm{D}f
\end{matrix}</math>
+
\\
|
+
= & \mathrm{d}f & + & \mathrm{d}^2\!f
<math>\begin{matrix}
+
\\
\mathrm{d}x\\\mathrm{d}x
+
= & \partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y & + & \partial_{xy} f \cdot \mathrm{d}x\;\mathrm{d}y
\end{matrix}</math>
  −
|
  −
<math>\begin{matrix}
  −
\mathrm{d}x\\\mathrm{d}x
  −
\end{matrix}</math>
  −
|
  −
<math>\begin{matrix}
  −
\mathrm{d}x\\\mathrm{d}x
   
\end{matrix}</math>
 
\end{matrix}</math>
 +
| <math>\mathrm{d}f|_{x \, y}</math>
 +
| <math>\mathrm{d}f|_{x \, \texttt{(} y \texttt{)}}</math>
 +
| <math>\mathrm{d}f|_{\texttt{(} x \texttt{)} \, y}</math>
 +
| <math>\mathrm{d}f|_{\texttt{(} x \texttt{)(} y \texttt{)}}</math>
 +
|-
 +
| style="border-right:none" | <math>f_0\!</math>
 +
| style="border-left:4px double black" | <math>0\!</math>
 +
| <math>0\!</math>
 +
| <math>0\!</math>
 +
| <math>0\!</math>
 +
| <math>0\!</math>
 
|-
 
|-
| style="border-right:none" | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math>
+
| style="border-right:none" | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}</math>
 
| style="border-left:4px double black" |
 
| style="border-left:4px double black" |
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + &
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + &
+
\texttt{(} x \texttt{)} \cdot \mathrm{d}y & + &
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
 +
\\
 +
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + &
 +
\texttt{(} x \texttt{)} \cdot \mathrm{d}y & + &
 +
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
 +
\\
 +
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + &
 +
\texttt{~} x \texttt{~} \cdot \mathrm{d}y & + &
 +
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
 
\\
 
\\
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + &
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + &
+
\texttt{~} x \texttt{~} \cdot \mathrm{d}y & + &
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
 
\end{matrix}</math>
 
\end{matrix}</math>
 
|
 
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
+
0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
 
\end{matrix}</math>
 
\end{matrix}</math>
 
|
 
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
+
\mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y
 
\end{matrix}</math>
 
\end{matrix}</math>
 
|
 
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
+
\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x
 
\end{matrix}</math>
 
\end{matrix}</math>
 
|
 
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
+
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0
 
\end{matrix}</math>
 
\end{matrix}</math>
 
|-
 
|-
| style="border-right:none" | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}\!</math>
+
| style="border-right:none" | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math>
 
| style="border-left:4px double black" |
 
| style="border-left:4px double black" |
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + &
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + &
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + &
 
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
 
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
 
\\
 
\\
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + &
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + &
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + &
 
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
 
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
\end{matrix}\!</math>
+
\end{matrix}</math>
 
|
 
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\mathrm{d}y\\\mathrm{d}y
+
\mathrm{d}x\\\mathrm{d}x
\end{matrix}\!</math>
+
\end{matrix}</math>
 
|
 
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\mathrm{d}y\\\mathrm{d}y
+
\mathrm{d}x\\\mathrm{d}x
\end{matrix}\!</math>
+
\end{matrix}</math>
 
|
 
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\mathrm{d}y\\\mathrm{d}y
+
\mathrm{d}x\\\mathrm{d}x
\end{matrix}\!</math>
+
\end{matrix}</math>
 
|
 
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\mathrm{d}y\\\mathrm{d}y
+
\mathrm{d}x\\\mathrm{d}x
\end{matrix}\!</math>
+
\end{matrix}</math>
 
|-
 
|-
| style="border-right:none" | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math>
+
| style="border-right:none" | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math>
 
| style="border-left:4px double black" |
 
| style="border-left:4px double black" |
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + &
\texttt{~} x \texttt{~} \cdot \mathrm{d}y & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + &
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
 
\\
 
\\
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + &
\texttt{~} x \texttt{~} \cdot \mathrm{d}y & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + &
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
\\
+
\end{matrix}</math>
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + &
  −
\texttt{(} x \texttt{)} \cdot \mathrm{d}y & + &
  −
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
  −
\\
  −
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + &
  −
\texttt{(} x \texttt{)} \cdot \mathrm{d}y & + &
  −
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
  −
\end{matrix}\!</math>
   
|
 
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0
+
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
 
\end{matrix}</math>
 
\end{matrix}</math>
 
|
 
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x
+
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
 
\end{matrix}</math>
 
\end{matrix}</math>
 
|
 
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
\mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y
+
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
 
\end{matrix}</math>
 
\end{matrix}</math>
 
|
 
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
+
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
 
\end{matrix}</math>
 
\end{matrix}</math>
 
|-
 
|-
| style="border-right:none" | <math>f_{15}\!</math>
+
| style="border-right:none" | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}</math>
| style="border-left:4px double black" | <math>0\!</math>
+
| style="border-left:4px double black" |
| <math>0\!</math>
+
<math>\begin{matrix}
| <math>0\!</math>
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + &
| <math>0\!</math>
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + &
| <math>0\!</math>
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
|}
+
\\
 
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + &
<br>
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + &
 
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
====Table A11. Partial Differentials and Relative Differentials====
+
\end{matrix}</math>
 
  −
<br>
  −
 
  −
{| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%"
  −
|+ style="height:30px" | <math>\text{Table A11.} ~~ \text{Partial Differentials and Relative Differentials}\!</math>
  −
|- style="background:ghostwhite; height:50px"
  −
| &nbsp;
  −
| <math>f\!</math>
  −
| <math>\frac{\partial f}{\partial x}</math>
  −
| <math>\frac{\partial f}{\partial y}</math>
   
|
 
|
<p><math>\operatorname{d}f =</math></p>
+
<math>\begin{matrix}
<p><math>\partial_x f \cdot \operatorname{d}x\ +\ \partial_y f \cdot \operatorname{d}y</math></p>
+
\mathrm{d}y\\\mathrm{d}y
| <math>\left. \frac{\partial x}{\partial y} \right| f</math>
+
\end{matrix}</math>
| <math>\left. \frac{\partial y}{\partial x} \right| f</math>
  −
|- style="height:36px"
  −
| <math>f_0\!</math>
  −
| <math>(~)\!</math>
  −
| <math>0\!</math>
  −
| <math>0\!</math>
  −
| <math>0\!</math>
  −
| <math>0\!</math>
  −
| <math>0\!</math>
  −
|-
   
|
 
|
{| align="center"
+
<math>\begin{matrix}
 +
\mathrm{d}y\\\mathrm{d}y
 +
\end{matrix}</math>
 
|
 
|
<math>\begin{smallmatrix}
+
<math>\begin{matrix}
f_{1} \\
+
\mathrm{d}y\\\mathrm{d}y
f_{2} \\
+
\end{matrix}</math>
f_{4} \\
  −
f_{8} \\
  −
\end{smallmatrix}</math>
  −
|}
   
|
 
|
{| align="center"
+
<math>\begin{matrix}
|
+
\mathrm{d}y\\\mathrm{d}y
<math>\begin{smallmatrix}
+
\end{matrix}</math>
(x) & (y) \\
+
|-
(x) &  y \\
+
| style="border-right:none" | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math>
x  & (y) \\
+
| style="border-left:4px double black" |
x & \\
+
<math>\begin{matrix}
\end{smallmatrix}</math>
+
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + &
|}
+
\texttt{~} x \texttt{~} \cdot \mathrm{d}y & + &
|
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
{| align="center"
+
\\
|
+
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + &
<math>\begin{smallmatrix}
+
\texttt{~} x \texttt{~} \cdot \mathrm{d}y & + &
(y) \\
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
y \\
+
\\
(y) \\
+
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + &
y \\
+
\texttt{(} x \texttt{)} \cdot \mathrm{d}y & + &
\end{smallmatrix}</math>
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
|}
+
\\
 +
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + &
 +
\texttt{(} x \texttt{)} \cdot \mathrm{d}y & + &
 +
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
 +
\end{matrix}</math>
 
|
 
|
{| align="center"
+
<math>\begin{matrix}
 +
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0
 +
\end{matrix}</math>
 
|
 
|
<math>\begin{smallmatrix}
+
<math>\begin{matrix}
(x) \\
+
\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x
(x) \\
+
\end{matrix}</math>
\\
  −
\\
  −
\end{smallmatrix}</math>
  −
|}
   
|
 
|
{| align="center"
+
<math>\begin{matrix}
 +
\mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y
 +
\end{matrix}</math>
 
|
 
|
<math>\begin{smallmatrix}
+
<math>\begin{matrix}
(y) & \operatorname{d}x & + & (x) & \operatorname{d}y \\
+
0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
y  & \operatorname{d}x & + & (x) & \operatorname{d}y \\
+
\end{matrix}</math>
(y) & \operatorname{d}x & + &  x  & \operatorname{d}y \\
+
|-
y  & \operatorname{d}x & + &  x  & \operatorname{d}y \\
+
| style="border-right:none" | <math>f_{15}\!</math>
\end{smallmatrix}</math>
+
| style="border-left:4px double black" | <math>0\!</math>
|}
+
| <math>0\!</math>
|
+
| <math>0\!</math>
{| align="center"
+
| <math>0\!</math>
|
+
| <math>0\!</math>
<math>\begin{smallmatrix}
+
|}
~ \\
+
 
~ \\
+
<br>
~ \\
+
 
~ \\
+
====Table A11. Partial Differentials and Relative Differentials====
\end{smallmatrix}</math>
+
 
|}
+
<br>
 +
 
 +
{| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%"
 +
|+ style="height:30px" | <math>\text{Table A11.} ~~ \text{Partial Differentials and Relative Differentials}\!</math>
 +
|- style="background:ghostwhite; height:50px"
 +
| &nbsp;
 +
| <math>f\!</math>
 +
| <math>\frac{\partial f}{\partial x}\!</math>
 +
| <math>\frac{\partial f}{\partial y}\!</math>
 
|
 
|
{| align="center"
+
<math>\begin{matrix}
|
+
\mathrm{d}f =
<math>\begin{smallmatrix}
+
\\[2pt]
~ \\
+
\partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y
~ \\
+
\end{matrix}</math>
~ \\
+
| <math>\left. \frac{\partial x}{\partial y} \right| f\!</math>
~ \\
+
| <math>\left. \frac{\partial y}{\partial x} \right| f\!</math>
\end{smallmatrix}</math>
+
|-
|}
+
| <math>f_0\!</math>
 +
| <math>\texttt{(~)}\!</math>
 +
| <math>0\!</math>
 +
| <math>0\!</math>
 +
| <math>0\!</math>
 +
| <math>0\!</math>
 +
| <math>0\!</math>
 
|-
 
|-
 +
| <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}</math>
 
|
 
|
{| align="center"
+
<math>\begin{matrix}
|
+
\texttt{(} x \texttt{)(} y \texttt{)}
<math>\begin{smallmatrix}
+
\\
f_{3} \\
+
\texttt{(} x \texttt{)~} y \texttt{~}
f_{12} \\
+
\\
\end{smallmatrix}</math>
+
\texttt{~} x \texttt{~(} y \texttt{)}
|}
+
\\
|
+
\texttt{~} x \texttt{~~} y \texttt{~}
{| align="center"
+
\end{matrix}</math>
 
|
 
|
<math>\begin{smallmatrix}
+
<math>\begin{matrix}
(x) \\
+
\texttt{(} y \texttt{)}
\\
+
\\
\end{smallmatrix}</math>
+
\texttt{~} y \texttt{~}
|}
+
\\
 +
\texttt{(} y \texttt{)}
 +
\\
 +
\texttt{~} y \texttt{~}
 +
\end{matrix}</math>
 
|
 
|
{| align="center"
+
<math>\begin{matrix}
 +
\texttt{(} x \texttt{)}
 +
\\
 +
\texttt{(} x \texttt{)}
 +
\\
 +
\texttt{~} x \texttt{~}
 +
\\
 +
\texttt{~} x \texttt{~}
 +
\end{matrix}</math>
 
|
 
|
<math>\begin{smallmatrix}
+
<math>\begin{matrix}
1 \\
+
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y
1 \\
+
\\
\end{smallmatrix}</math>
+
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y
|}
+
\\
 +
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y
 +
\\
 +
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y
 +
\end{matrix}</math>
 +
| <math>\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}</math>
 +
| <math>\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}</math>
 +
|-
 +
| <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math>
 
|
 
|
{| align="center"
+
<math>\begin{matrix}
|
+
\texttt{(} x \texttt{)}
<math>\begin{smallmatrix}
+
\\
0 \\
+
\texttt{~} x \texttt{~}
0 \\
+
\end{matrix}</math>
\end{smallmatrix}</math>
+
| <math>\begin{matrix}1\\1\end{matrix}</math>
|}
+
| <math>\begin{matrix}0\\0\end{matrix}</math>
 +
| <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math>
 +
| <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math>
 +
| <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math>
 +
|-
 +
| <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math>
 
|
 
|
{| align="center"
+
<math>\begin{matrix}
 +
\texttt{~(} x \texttt{,~} y \texttt{)~}
 +
\\
 +
\texttt{((} x \texttt{,~} y \texttt{))}
 +
\end{matrix}</math>
 +
| <math>\begin{matrix}1\\1\end{matrix}</math>
 +
| <math>\begin{matrix}1\\1\end{matrix}</math>
 +
| <math>\begin{matrix}\mathrm{d}x & + & \mathrm{d}y\\\mathrm{d}x & + & \mathrm{d}y\end{matrix}</math>
 +
| <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math>
 +
| <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math>
 +
|-
 +
| <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}</math>
 
|
 
|
<math>\begin{smallmatrix}
+
<math>\begin{matrix}
\operatorname{d}x \\
+
\texttt{(} y \texttt{)}
\operatorname{d}x \\
+
\\
\end{smallmatrix}</math>
+
\texttt{~} y \texttt{~}
|}
+
\end{matrix}</math>
|
+
| <math>\begin{matrix}0\\0\end{matrix}</math>
{| align="center"
+
| <math>\begin{matrix}1\\1\end{matrix}</math>
|
+
| <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}</math>
<math>\begin{smallmatrix}
+
| <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math>
~ \\
+
| <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math>
~ \\
  −
\end{smallmatrix}</math>
  −
|}
  −
|
  −
{| align="center"
  −
|
  −
<math>\begin{smallmatrix}
  −
~ \\
  −
~ \\
  −
\end{smallmatrix}</math>
  −
|}
   
|-
 
|-
 +
| <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math>
 
|
 
|
{| align="center"
+
<math>\begin{matrix}
 +
\texttt{(~} x \texttt{~~} y \texttt{~)}
 +
\\
 +
\texttt{(~} x \texttt{~(} y \texttt{))}
 +
\\
 +
\texttt{((} x \texttt{)~} y \texttt{~)}
 +
\\
 +
\texttt{((} x \texttt{)(} y \texttt{))}
 +
\end{matrix}</math>
 
|
 
|
<math>\begin{smallmatrix}
+
<math>\begin{matrix}
f_{6} \\
+
\texttt{~} y \texttt{~}
f_{9} \\
+
\\
\end{smallmatrix}</math>
+
\texttt{(} y \texttt{)}
|}
+
\\
|
+
\texttt{~} y \texttt{~}
{| align="center"
+
\\
 +
\texttt{(} y \texttt{)}
 +
\end{matrix}</math>
 
|
 
|
<math>\begin{smallmatrix}
+
<math>\begin{matrix}
(x, & y) \\
+
\texttt{~} x \texttt{~}
((x, & y)) \\
+
\\
\end{smallmatrix}</math>
+
\texttt{~} x \texttt{~}
|}
+
\\
 +
\texttt{(} x \texttt{)}
 +
\\
 +
\texttt{(} x \texttt{)}
 +
\end{matrix}</math>
 
|
 
|
{| align="center"
+
<math>\begin{matrix}
|
+
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y
<math>\begin{smallmatrix}
+
\\
1 \\
+
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y
1 \\
+
\\
\end{smallmatrix}</math>
+
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y
|}
+
\\
|
+
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y
{| align="center"
+
\end{matrix}</math>
|
+
| <math>\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}</math>
<math>\begin{smallmatrix}
+
| <math>\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}</math>
1 \\
+
|-
1 \\
+
| <math>f_{15}\!</math>
\end{smallmatrix}</math>
+
| <math>\texttt{((~))}\!</math>
|}
+
| <math>0\!</math>
|
+
| <math>0\!</math>
{| align="center"
+
| <math>0\!</math>
|
+
| <math>0\!</math>
<math>\begin{smallmatrix}
+
| <math>0\!</math>
\operatorname{d}x & + & \operatorname{d}y \\
  −
\operatorname{d}x & + & \operatorname{d}y \\
  −
\end{smallmatrix}</math>
  −
|}
  −
|
  −
{| align="center"
  −
|
  −
<math>\begin{smallmatrix}
  −
~ \\
  −
~ \\
  −
\end{smallmatrix}</math>
  −
|}
  −
|
  −
{| align="center"
  −
|
  −
<math>\begin{smallmatrix}
  −
~ \\
  −
~ \\
  −
\end{smallmatrix}</math>
  −
|}
  −
|-
  −
|
  −
{| align="center"
  −
|
  −
<math>\begin{smallmatrix}
  −
f_{5}  \\
  −
f_{10} \\
  −
\end{smallmatrix}</math>
  −
|}
  −
|
  −
{| align="center"
  −
|
  −
<math>\begin{smallmatrix}
  −
(y) \\
  −
y  \\
  −
\end{smallmatrix}</math>
  −
|}
  −
|
  −
{| align="center"
  −
|
  −
<math>\begin{smallmatrix}
  −
0 \\
  −
0 \\
  −
\end{smallmatrix}</math>
  −
|}
  −
|
  −
{| align="center"
  −
|
  −
<math>\begin{smallmatrix}
  −
1 \\
  −
1 \\
  −
\end{smallmatrix}</math>
  −
|}
  −
|
  −
{| align="center"
  −
|
  −
<math>\begin{smallmatrix}
  −
\operatorname{d}y \\
  −
\operatorname{d}y \\
  −
\end{smallmatrix}</math>
  −
|}
  −
|
  −
{| align="center"
  −
|
  −
<math>\begin{smallmatrix}
  −
~ \\
  −
~ \\
  −
\end{smallmatrix}</math>
  −
|}
  −
|
  −
{| align="center"
  −
|
  −
<math>\begin{smallmatrix}
  −
~ \\
  −
~ \\
  −
\end{smallmatrix}</math>
   
|}
 
|}
 +
 +
<br>
 +
 +
====Table A12. Detail of Calculation for the Difference Map====
 +
 +
<br>
 +
 +
{| align="center" cellpadding="6" cellspacing="0" style="border-bottom:4px double black; border-left:4px double black; border-right:4px double black; border-top:4px double black; text-align:center; width:80%"
 +
|+ style="height:30px" | <math>\text{Table A12.} ~~ \text{Detail of Calculation for}~ {\mathrm{E}f + f = \mathrm{D}f}\!</math>
 +
|- style="background:ghostwhite"
 +
| style="width:6%" | &nbsp;
 +
| style="width:14%; border-left:1px solid black"  | <math>f\!</math>
 +
| style="width:20%; border-left:4px double black" |
 +
<math>\begin{array}{cr}
 +
~ & \mathrm{E}f|_{\mathrm{d}x ~ \mathrm{d}y}
 +
\\[4pt]
 +
+ & f|_{\mathrm{d}x ~ \mathrm{d}y}
 +
\\[4pt]
 +
= & \mathrm{D}f|_{\mathrm{d}x ~ \mathrm{d}y}
 +
\end{array}</math>
 +
| style="width:20%; border-left:1px solid black" |
 +
<math>\begin{array}{cr}
 +
~ & \mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y}
 +
\\[4pt]
 +
+ & f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y}
 +
\\[4pt]
 +
= & \mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y}
 +
\end{array}</math>
 +
| style="width:20%; border-left:1px solid black" |
 +
<math>\begin{array}{cr}
 +
~ & \mathrm{E}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}}
 +
\\[4pt]
 +
+ & f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}}
 +
\\[4pt]
 +
= & \mathrm{D}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}}
 +
\end{array}</math>
 +
| style="width:20%; border-left:1px solid black" |
 +
<math>\begin{array}{cr}
 +
~ & \mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}}
 +
\\[4pt]
 +
+ & f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}}
 +
\\[4pt]
 +
= & \mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}}
 +
\end{array}</math>
 
|-
 
|-
|
+
| style="border-top:4px double black" | <math>f_{0}\!</math>
{| align="center"
+
| style="border-top:4px double black; border-left:1px solid black" | <math>0\!</math>
|
+
| style="border-top:4px double black; border-left:4px double black" | <math>0 ~+~ 0 ~=~ 0\!</math>
<math>\begin{smallmatrix}
+
| style="border-top:4px double black; border-left:1px solid black"  | <math>0 ~+~ 0 ~=~ 0\!</math>
f_{7} \\
+
| style="border-top:4px double black; border-left:1px solid black" | <math>0 ~+~ 0 ~=~ 0\!</math>
f_{11} \\
+
| style="border-top:4px double black; border-left:1px solid black" | <math>0 ~+~ 0 ~=~ 0\!</math>
f_{13} \\
+
|-
f_{14} \\
+
| style="border-top:4px double black" | <math>f_{1}\!</math>
\end{smallmatrix}</math>
+
| style="border-top:4px double black; border-left:1px solid black" |
|}
+
<math>\texttt{~(} x \texttt{)(} y \texttt{)~}\!</math>
|
+
| style="border-top:4px double black; border-left:4px double black" |
{| align="center"
+
<math>\begin{matrix}
|
+
~ & \texttt{~~} x \texttt{~~} y \texttt{~~}
<math>\begin{smallmatrix}
+
\\[4pt]
(x  &  y)  \\
+
+ & \texttt{~(} x \texttt{)(} y \texttt{)~}
(x  & (y)) \\
+
\\[4pt]
((x) &  y)  \\
+
= & \texttt{((} x \texttt{,~} y \texttt{))}
((x) & (y)) \\
+
\end{matrix}</math>
\end{smallmatrix}</math>
+
| style="border-top:4px double black; border-left:1px solid black" |
|}
+
<math>\begin{matrix}
|
+
~ & \texttt{~~} x \texttt{~(} y \texttt{)~}
{| align="center"
+
\\[4pt]
|
+
+ & \texttt{~(} x \texttt{)(} y \texttt{)~}
<math>\begin{smallmatrix}
  −
y  \\
  −
(y) \\
  −
y  \\
  −
(y) \\
  −
\end{smallmatrix}</math>
  −
|}
  −
|
  −
{| align="center"
  −
|
  −
<math>\begin{smallmatrix}
  −
x  \\
  −
x \\
  −
(x) \\
  −
(x) \\
  −
\end{smallmatrix}</math>
  −
|}
  −
|
  −
{| align="center"
  −
|
  −
<math>\begin{smallmatrix}
  −
y  & \operatorname{d}x & + &  x  & \operatorname{d}y \\
  −
(y) & \operatorname{d}x & + &  x  & \operatorname{d}y \\
  −
y  & \operatorname{d}x & + & (x) & \operatorname{d}y \\
  −
(y) & \operatorname{d}x & + & (x) & \operatorname{d}y \\
  −
\end{smallmatrix}</math>
  −
|}
  −
|
  −
{| align="center"
  −
|
  −
<math>\begin{smallmatrix}
  −
~ \\
  −
~ \\
  −
~ \\
  −
~ \\
  −
\end{smallmatrix}</math>
  −
|}
  −
|
  −
{| align="center"
  −
|
  −
<math>\begin{smallmatrix}
  −
~ \\
  −
~ \\
  −
~ \\
  −
~ \\
  −
\end{smallmatrix}</math>
  −
|}
  −
|- style="height:36px"
  −
| <math>f_{15}\!</math>
  −
| <math>((~))\!</math>
  −
| <math>0\!</math>
  −
| <math>0\!</math>
  −
| <math>0\!</math>
  −
| <math>0\!</math>
  −
| <math>0\!</math>
  −
|}
  −
 
  −
<br>
  −
 
  −
====Table A12. Detail of Calculation for the Difference Map====
  −
 
  −
<br>
  −
 
  −
{| align="center" cellpadding="6" cellspacing="0" style="border-bottom:4px double black; border-left:4px double black; border-right:4px double black; border-top:4px double black; text-align:center; width:80%"
  −
|+ style="height:30px" | <math>\text{Table A12.} ~~ \text{Detail of Calculation for}~ {\mathrm{E}f + f = \mathrm{D}f}\!</math>
  −
|- style="background:ghostwhite"
  −
| style="width:6%" | &nbsp;
  −
| style="width:14%; border-left:1px solid black"  | <math>f\!</math>
  −
| style="width:20%; border-left:4px double black" |
  −
<math>\begin{array}{cr}
  −
~ & \mathrm{E}f|_{\mathrm{d}x ~ \mathrm{d}y}
   
\\[4pt]
 
\\[4pt]
+ & f|_{\mathrm{d}x ~ \mathrm{d}y}
+
= & \texttt{~~} ~ \texttt{~(} y \texttt{)~}
 +
\end{matrix}</math>
 +
| style="border-top:4px double black; border-left:1px solid black" |
 +
<math>\begin{matrix}
 +
~ & \texttt{~(} x \texttt{)~} y \texttt{~~}
 
\\[4pt]
 
\\[4pt]
= & \mathrm{D}f|_{\mathrm{d}x ~ \mathrm{d}y}
+
+ & \texttt{~(} x \texttt{)(} y \texttt{)~}
\end{array}</math>
  −
| style="width:20%; border-left:1px solid black" |
  −
<math>\begin{array}{cr}
  −
~ & \mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y}
   
\\[4pt]
 
\\[4pt]
+ & f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y}
+
= & \texttt{~(} x \texttt{)~} ~ \texttt{~~}
\\[4pt]
+
\end{matrix}</math>
= & \mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y}
  −
\end{array}</math>
  −
| style="width:20%; border-left:1px solid black" |
  −
<math>\begin{array}{cr}
  −
~ & \mathrm{E}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}}
  −
\\[4pt]
  −
+ & f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}}
  −
\\[4pt]
  −
= & \mathrm{D}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}}
  −
\end{array}</math>
  −
| style="width:20%; border-left:1px solid black" |
  −
<math>\begin{array}{cr}
  −
~ & \mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}}
  −
\\[4pt]
  −
+ & f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}}
  −
\\[4pt]
  −
= & \mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}}
  −
\end{array}</math>
  −
|-
  −
| style="border-top:4px double black" | <math>f_{0}\!</math>
  −
| style="border-top:4px double black; border-left:1px solid black"  | <math>0\!</math>
  −
| style="border-top:4px double black; border-left:4px double black" | <math>0 ~+~ 0 ~=~ 0\!</math>
  −
| style="border-top:4px double black; border-left:1px solid black"  | <math>0 ~+~ 0 ~=~ 0\!</math>
  −
| style="border-top:4px double black; border-left:1px solid black"  | <math>0 ~+~ 0 ~=~ 0\!</math>
  −
| style="border-top:4px double black; border-left:1px solid black"  | <math>0 ~+~ 0 ~=~ 0\!</math>
  −
|-
  −
| style="border-top:4px double black" | <math>f_{1}\!</math>
   
| style="border-top:4px double black; border-left:1px solid black" |
 
| style="border-top:4px double black; border-left:1px solid black" |
<math>\texttt{~(} x \texttt{)(} y \texttt{)~}\!</math>
  −
| style="border-top:4px double black; border-left:4px double black" |
   
<math>\begin{matrix}
 
<math>\begin{matrix}
~ & \texttt{~~} x \texttt{~~} y \texttt{~~}
+
~ & \texttt{~(} x \texttt{)(} y \texttt{)~}
 
\\[4pt]
 
\\[4pt]
 
+ & \texttt{~(} x \texttt{)(} y \texttt{)~}
 
+ & \texttt{~(} x \texttt{)(} y \texttt{)~}
 
\\[4pt]
 
\\[4pt]
= & \texttt{((} x \texttt{,~} y \texttt{))}
+
= & 0
 
\end{matrix}</math>
 
\end{matrix}</math>
| style="border-top:4px double black; border-left:1px solid black" |
+
|-
<math>\begin{matrix}
+
| style="border-top:1px solid black" | <math>f_{2}\!</math>
~ & \texttt{~~} x \texttt{~(} y \texttt{)~}
+
| style="border-top:1px solid black; border-left:1px solid black" |
\\[4pt]
  −
+ & \texttt{~(} x \texttt{)(} y \texttt{)~}
  −
\\[4pt]
  −
= & \texttt{~~} ~ \texttt{~(} y \texttt{)~}
  −
\end{matrix}</math>
  −
| style="border-top:4px double black; border-left:1px solid black" |
  −
<math>\begin{matrix}
  −
~ & \texttt{~(} x \texttt{)~} y \texttt{~~}
  −
\\[4pt]
  −
+ & \texttt{~(} x \texttt{)(} y \texttt{)~}
  −
\\[4pt]
  −
= & \texttt{~(} x \texttt{)~} ~ \texttt{~~}
  −
\end{matrix}</math>
  −
| style="border-top:4px double black; border-left:1px solid black" |
  −
<math>\begin{matrix}
  −
~ & \texttt{~(} x \texttt{)(} y \texttt{)~}
  −
\\[4pt]
  −
+ & \texttt{~(} x \texttt{)(} y \texttt{)~}
  −
\\[4pt]
  −
= & 0
  −
\end{matrix}</math>
  −
|-
  −
| style="border-top:1px solid black" | <math>f_{2}\!</math>
  −
| style="border-top:1px solid black; border-left:1px solid black" |
   
<math>\texttt{~(} x \texttt{)~} y \texttt{~~}\!</math>
 
<math>\texttt{~(} x \texttt{)~} y \texttt{~~}\!</math>
 
| style="border-top:1px solid black; border-left:4px double black" |
 
| style="border-top:1px solid black; border-left:4px double black" |
Line 10,350: Line 10,292:  
~ & \texttt{~(} x \texttt{~~} y \texttt{)~}
 
~ & \texttt{~(} x \texttt{~~} y \texttt{)~}
 
\\[4pt]
 
\\[4pt]
+ & \texttt{((} x \texttt{)(} y \texttt{))}
+
+ & \texttt{((} x \texttt{)(} y \texttt{))}
\\[4pt]
+
\\[4pt]
= & \texttt{((} x \texttt{,~} y \texttt{))}
+
= & \texttt{((} x \texttt{,~} y \texttt{))}
\end{matrix}</math>
+
\end{matrix}</math>
| style="border-top:1px solid black; border-left:1px solid black" |
+
| style="border-top:1px solid black; border-left:1px solid black" |
<math>\begin{matrix}
+
<math>\begin{matrix}
~ & \texttt{~(} x \texttt{~(} y \texttt{))}
+
~ & \texttt{~(} x \texttt{~(} y \texttt{))}
\\[4pt]
+
\\[4pt]
+ & \texttt{((} x \texttt{)(} y \texttt{))}
+
+ & \texttt{((} x \texttt{)(} y \texttt{))}
\\[4pt]
+
\\[4pt]
= & \texttt{~~} ~ \texttt{~(} y \texttt{)~}
+
= & \texttt{~~} ~ \texttt{~(} y \texttt{)~}
\end{matrix}</math>
+
\end{matrix}</math>
| style="border-top:1px solid black; border-left:1px solid black" |
+
| style="border-top:1px solid black; border-left:1px solid black" |
<math>\begin{matrix}
+
<math>\begin{matrix}
~ & \texttt{((} x \texttt{)~} y \texttt{)~}
+
~ & \texttt{((} x \texttt{)~} y \texttt{)~}
\\[4pt]
+
\\[4pt]
+ & \texttt{((} x \texttt{)(} y \texttt{))}
+
+ & \texttt{((} x \texttt{)(} y \texttt{))}
\\[4pt]
+
\\[4pt]
= & \texttt{~(} x \texttt{)~} ~ \texttt{~~}
+
= & \texttt{~(} x \texttt{)~} ~ \texttt{~~}
\end{matrix}</math>
+
\end{matrix}</math>
| style="border-top:1px solid black; border-left:1px solid black" |
+
| style="border-top:1px solid black; border-left:1px solid black" |
<math>\begin{matrix}
+
<math>\begin{matrix}
~ & \texttt{((} x \texttt{)(} y \texttt{))}
+
~ & \texttt{((} x \texttt{)(} y \texttt{))}
\\[4pt]
+
\\[4pt]
+ & \texttt{((} x \texttt{)(} y \texttt{))}
+
+ & \texttt{((} x \texttt{)(} y \texttt{))}
\\[4pt]
+
\\[4pt]
= & 0
+
= & 0
\end{matrix}</math>
+
\end{matrix}</math>
|-
+
|-
| style="border-top:4px double black" | <math>f_{15}\!</math>
+
| style="border-top:4px double black" | <math>f_{15}\!</math>
| style="border-top:4px double black; border-left:1px solid black"  | <math>1\!</math>
+
| style="border-top:4px double black; border-left:1px solid black"  | <math>1\!</math>
| style="border-top:4px double black; border-left:4px double black" | <math>1 ~+~ 1 ~=~ 0\!</math>
+
| style="border-top:4px double black; border-left:4px double black" | <math>1 ~+~ 1 ~=~ 0\!</math>
| style="border-top:4px double black; border-left:1px solid black"  | <math>1 ~+~ 1 ~=~ 0\!</math>
+
| style="border-top:4px double black; border-left:1px solid black"  | <math>1 ~+~ 1 ~=~ 0\!</math>
| style="border-top:4px double black; border-left:1px solid black"  | <math>1 ~+~ 1 ~=~ 0\!</math>
+
| style="border-top:4px double black; border-left:1px solid black"  | <math>1 ~+~ 1 ~=~ 0\!</math>
| style="border-top:4px double black; border-left:1px solid black"  | <math>1 ~+~ 1 ~=~ 0\!</math>
+
| style="border-top:4px double black; border-left:1px solid black"  | <math>1 ~+~ 1 ~=~ 0\!</math>
 +
|}
 +
 
 +
<br>
 +
 
 +
===Appendix 3. Computational Details===
 +
 
 +
====Operator Maps for the Logical Conjunction ''f''<sub>8</sub>(u, v)====
 +
 
 +
=====Computation of &epsilon;''f''<sub>8</sub>=====
 +
 
 +
<br>
 +
 
 +
{| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%"
 +
|+ style="height:30px" | <math>\text{Table F8.1} ~~ \text{Computation of}~ \boldsymbol\varepsilon f_{8}~\!</math>
 +
|
 +
<math>\begin{array}{*{9}{l}}
 +
\boldsymbol\varepsilon f_{8} & = & f_{8}(u, v)
 +
\\[4pt]
 +
& = & u \cdot v
 +
\\[4pt]
 +
& = & u \cdot v \cdot \texttt{(} \mathrm{d}u \texttt{)} \cdot \texttt{(} \mathrm{d}v \texttt{)}
 +
& + & u \cdot v \cdot \texttt{(} \mathrm{d}u \texttt{)} \cdot \texttt{ } \mathrm{d}v \texttt{ }
 +
& + & u \cdot v \cdot \texttt{ } \mathrm{d}u \texttt{ } \cdot \texttt{(} \mathrm{d}v \texttt{)}
 +
& + & u \cdot v \cdot \texttt{ } \mathrm{d}u \texttt{ } \cdot \texttt{ } \mathrm{d}v \texttt{ }
 +
\end{array}\!</math>
 +
|-
 +
|
 +
<math>\begin{array}{*{4}{l}}
 +
\boldsymbol\varepsilon f_{8}
 +
& = && u \cdot v \cdot \texttt{(} \mathrm{d}u \texttt{)} \cdot \texttt{(} \mathrm{d}v \texttt{)}
 +
\\[4pt]
 +
&& + & u \cdot v \cdot \texttt{(} \mathrm{d}u \texttt{)} \cdot \texttt{~} \mathrm{d}v \texttt{~}
 +
\\[4pt]
 +
&& + & u \cdot v \cdot \texttt{~} \mathrm{d}u \texttt{~} \cdot \texttt{(} \mathrm{d}v \texttt{)}
 +
\\[4pt]
 +
&& + & u \cdot v \cdot \texttt{~} \mathrm{d}u \texttt{~} \cdot \texttt{~} \mathrm{d}v \texttt{~}
 +
\end{array}\!</math>
 +
|}
 +
 
 +
<br>
 +
 
 +
=====Computation of E''f''<sub>8</sub>=====
 +
 
 +
<br>
 +
 
 +
{| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%"
 +
|+ style="height:30px" | <math>\text{Table F8.2-i} ~~ \text{Computation of}~ \mathrm{E}f_{8} ~\text{(Method 1)}\!</math>
 +
|
 +
<math>\begin{array}{*{9}{l}}
 +
\mathrm{E}f_{8} & = & f_{8}(u + \mathrm{d}u, v + \mathrm{d}v)
 +
\\[4pt]
 +
& = & \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)} \cdot \texttt{(} v \texttt{,} \mathrm{d}v \texttt{)}
 +
\\[4pt]
 +
& = & \texttt{ } u \texttt{ } \texttt{ } v \texttt{ } \cdot f_{8}(1\!+\!\mathrm{d}u, 1\!+\!\mathrm{d}v)
 +
& + & \texttt{ } u \texttt{ } \texttt{(} v \texttt{)} \cdot f_{8}(1\!+\!\mathrm{d}u, \mathrm{d}v)
 +
& + & \texttt{(} u \texttt{)} \texttt{ } v \texttt{ } \cdot f_{8}(\mathrm{d}u, 1\!+\!\mathrm{d}v)
 +
& + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot f_{8}(\mathrm{d}u, \mathrm{d}v)
 +
\\[4pt]
 +
& = &
 +
\texttt{ } u \texttt{ } \texttt{ } v \texttt{ } \cdot f_{8}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{(} \mathrm{d}v \texttt{)})
 +
& + &
 +
\texttt{ } u \texttt{ } \texttt{(} v \texttt{)} \cdot f_{8}(\texttt{(} \mathrm{d}u \texttt{)}, \mathrm{d}v)
 +
& + &
 +
\texttt{(} u \texttt{)} \texttt{ } v \texttt{ } \cdot f_{8}(\mathrm{d}u, \texttt{(} \mathrm{d}v \texttt{)})
 +
& + &
 +
\texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot f_{8}(\mathrm{d}u, \mathrm{d}v)
 +
\end{array}\!</math>
 +
|-
 +
|
 +
<math>\begin{array}{*{9}{l}}
 +
\mathrm{E}f_{8}
 +
& = &
 +
\texttt{ } u \texttt{ } \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)}
 +
\\[4pt]
 +
&&& + &
 +
\texttt{ } u \texttt{ } \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \texttt{ } \mathrm{d}v \texttt{ }
 +
\\[4pt]
 +
&&&&& + &
 +
\texttt{(} u \texttt{)} \texttt{ } v \texttt{ } \cdot \texttt{ } \mathrm{d}u \texttt{ } \texttt{(} \mathrm{d}v \texttt{)}
 +
\\[4pt]
 +
&&&&&&& + &
 +
\texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot \texttt{ } \mathrm{d}u \texttt{ }~\texttt{ } \mathrm{d}v \texttt{ }
 +
\end{array}</math>
 +
|}
 +
 
 +
<br>
 +
 
 +
{| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%"
 +
|+ style="height:30px" | <math>\text{Table F8.2-ii} ~~ \text{Computation of}~ \mathrm{E}f_{8} ~\text{(Method 2)}\!</math>
 +
|
 +
<math>\begin{array}{*{9}{c}}
 +
\mathrm{E}f_{8}
 +
& = & (u + \mathrm{d}u) \cdot (v + \mathrm{d}v)
 +
\\[6pt]
 +
& = & u \cdot v
 +
& + & u \cdot \mathrm{d}v
 +
& + & v \cdot \mathrm{d}u
 +
& + & \mathrm{d}u \cdot \mathrm{d}v
 +
\\[6pt]
 +
\mathrm{E}f_{8}
 +
& = &
 +
\texttt{ } u \texttt{ } \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)}
 +
& + &
 +
\texttt{ } u \texttt{ } \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \texttt{ } \mathrm{d}v \texttt{ }
 +
& + &
 +
\texttt{(} u \texttt{)} \texttt{ } v \texttt{ } \cdot \texttt{ } \mathrm{d}u \texttt{ } \texttt{(} \mathrm{d}v \texttt{)}
 +
& + &
 +
\texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot \texttt{ } \mathrm{d}u \texttt{ }~\texttt{ } \mathrm{d}v \texttt{ }
 +
\end{array}\!</math>
 +
|}
 +
 
 +
<br>
 +
 
 +
=====Computation of D''f''<sub>8</sub>=====
 +
 
 +
<br>
 +
 
 +
{| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%"
 +
|+ style="height:30px" | <math>\text{Table F8.3-i} ~~ \text{Computation of}~ \mathrm{D}f_{8} ~\text{(Method 1)}\!</math>
 +
|
 +
<math>\begin{array}{*{9}{l}}
 +
\mathrm{D}f_{8}
 +
& = & \mathrm{E}f_{8}
 +
& + & \boldsymbol\varepsilon f_{8}
 +
\\[6pt]
 +
& = & f_{8}(u + \mathrm{d}u, v + \mathrm{d}v)
 +
& + & f_{8}(u, v)
 +
\\[6pt]
 +
& = & \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)} \cdot \texttt{(} v \texttt{,} \mathrm{d}v \texttt{)}
 +
& + & u \cdot v
 +
\end{array}\!</math>
 +
|-
 +
|
 +
<math>\begin{array}{*{9}{l}}
 +
\mathrm{D}f_{8}
 +
& = &
 +
u \cdot v \cdot \qquad 0
 +
\\[6pt]
 +
& + &
 +
u \cdot v \cdot \texttt{(} \mathrm{d}u \texttt{)} \cdot \mathrm{d}v
 +
& + &
 +
u \cdot \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \cdot \mathrm{d}v
 +
\\[6pt]
 +
& + &
 +
u \cdot v \cdot \texttt{~} \mathrm{d}u \cdot \texttt{(} \mathrm{d}v \texttt{)}
 +
&&& + &
 +
\texttt{(} u \texttt{)} \cdot v \cdot \mathrm{d}u \cdot \texttt{(} \mathrm{d}v \texttt{)}
 +
\\[6pt]
 +
& + &
 +
u \cdot v \cdot \texttt{~} \mathrm{d}u \;\cdot\; \mathrm{d}v \texttt{~}
 +
&&&&& + &
 +
\texttt{(} u \texttt{)} \cdot \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v \texttt{~}
 +
\end{array}</math>
 +
|-
 +
|
 +
<math>\begin{array}{*{9}{l}}
 +
\mathrm{D}f_{8}
 +
& = &
 +
u \cdot v \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))}
 +
& + &
 +
u \cdot \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \cdot \mathrm{d}v
 +
& + &
 +
\texttt{(} u \texttt{)} \cdot v \cdot \mathrm{d}u \cdot \texttt{(} \mathrm{d}v \texttt{)}
 +
& + &
 +
\texttt{(} u \texttt{)} \cdot \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v \texttt{~}
 +
\end{array}</math>
 +
|}
 +
 
 +
<br>
 +
 
 +
{| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%"
 +
|+ style="height:30px" | <math>\text{Table F8.3-ii} ~~ \text{Computation of}~ \mathrm{D}f_{8} ~\text{(Method 2)}\!</math>
 +
|
 +
<math>\begin{array}{*{9}{l}}
 +
\mathrm{D}f_{8}
 +
& = & \boldsymbol\varepsilon f_{8}
 +
& + & \mathrm{E}f_{8}
 +
\\[6pt]
 +
& = & f_{8}(u, v)
 +
& + & f_{8}(u + \mathrm{d}u, v + \mathrm{d}v)
 +
\\[6pt]
 +
& = & u \cdot v
 +
& + & \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)} \cdot \texttt{(} v \texttt{,} \mathrm{d}v \texttt{)}
 +
\\[6pt]
 +
& = & 0
 +
& + & u \cdot \mathrm{d}v
 +
& + & v \cdot \mathrm{d}u
 +
& + & \mathrm{d}u \cdot \mathrm{d}v
 +
\\[6pt]
 +
\mathrm{D}f_{8}
 +
& = & 0
 +
& + & u \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v
 +
& + & v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)}
 +
& + & \texttt{((} u \texttt{,} v \texttt{))} \cdot \mathrm{d}u \cdot \mathrm{d}v
 +
\end{array}</math>
 +
|}
 +
 
 +
<br>
 +
 
 +
{| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%"
 +
|+ style="height:30px" | <math>\text{Table F8.3-iii} ~~ \text{Computation of}~ \mathrm{D}f_{8} ~\text{(Method 3)}\!</math>
 +
|
 +
<math>\begin{array}{*{5}{l}}
 +
\mathrm{D}f_{8} & = & \boldsymbol\varepsilon f_{8} & + & \mathrm{E}f_{8}
 +
\end{array}</math>
 +
|-
 +
|
 +
<math>\begin{array}{*{9}{l}}
 +
\boldsymbol\varepsilon f_{8}
 +
& = &  u \,\cdot\, v \,\cdot\, \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)}
 +
& + &  u \,\cdot\, v \,\cdot\, \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v
 +
& + & ~ u \,\cdot\, v \,\cdot\, \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)}
 +
& + & ~ u \;\cdot\; v \;\cdot\; \mathrm{d}u ~ \mathrm{d}v
 +
\\[6pt]
 +
\mathrm{E}f_{8}
 +
& = & u \,\cdot\, v \,\cdot\, \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)}
 +
& + & u ~ \texttt{(} v \texttt{)}  \cdot  \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v
 +
& + & \texttt{(} u \texttt{)} ~ v \,\cdot\, \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)}
 +
& + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot\, \mathrm{d}u ~ \mathrm{d}v
 +
\end{array}</math>
 +
|-
 +
|
 +
<math>\begin{array}{*{9}{l}}
 +
\mathrm{D}f_{8}
 +
& = & ~~ 0 ~~ \,\cdot\, ~ \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)}
 +
& + & ~~ u ~  \,\cdot\, ~~ \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v
 +
& + & ~~~ v ~~ \,\cdot\, \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)}
 +
& + & \texttt{((} u \texttt{,} v \texttt{))} \cdot \mathrm{d}u ~ \mathrm{d}v
 +
\end{array}\!</math>
 +
|}
 +
 
 +
<br>
 +
 
 +
=====Computation of d''f''<sub>8</sub>=====
 +
 
 +
<br>
 +
 
 +
{| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%"
 +
|+ style="height:30px" | <math>\text{Table F8.4} ~~ \text{Computation of}~ \mathrm{d}f_{8}\!</math>
 +
|
 +
<math>\begin{array}{c*{8}{l}}
 +
\mathrm{D}f_{8}
 +
& = &
 +
u\!\cdot\!v \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))}
 +
& + &
 +
u \, \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \, \mathrm{d}v
 +
& + &
 +
\texttt{(} u \texttt{)} \, v \cdot \mathrm{d}u \, \texttt{(} \mathrm{d}v \texttt{)}
 +
& + &
 +
\texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \!\cdot\! \mathrm{d}v \texttt{~}
 +
\\[6pt]
 +
\Downarrow
 +
\\[6pt]
 +
\mathrm{d}f_{8}
 +
& = &
 +
u\!\cdot\!v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
 +
& + &
 +
u \, \texttt{(} v \texttt{)} \cdot \mathrm{d}v
 +
& + &
 +
\texttt{(} u \texttt{)} \, v \cdot \mathrm{d}u
 +
& + &
 +
\texttt{(} u \texttt{)(} v \texttt{)} \cdot 0
 +
\end{array}</math>
 +
|}
 +
 
 +
<br>
 +
 
 +
=====Computation of r''f''<sub>8</sub>=====
 +
 
 +
<br>
 +
 
 +
{| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%"
 +
|+ style="height:30px" | <math>\text{Table F8.5} ~~ \text{Computation of}~ \mathrm{r}f_{8}\!</math>
 +
|
 +
<math>\begin{array}{*{5}{l}}
 +
\mathrm{r}f_{8} & = & \mathrm{D}f_{8} & + & \mathrm{d}f_{8}
 +
\end{array}</math>
 +
|-
 +
|
 +
<math>\begin{array}{*{9}{l}}
 +
\mathrm{D}f_{8}
 +
& = & u \!\cdot\! v \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))}
 +
& + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v
 +
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)}
 +
& + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v
 +
\\[6pt]
 +
\mathrm{d}f_{8}
 +
& = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
 +
& + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v
 +
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u
 +
& + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot 0
 +
\end{array}</math>
 +
|-
 +
|
 +
<math>\begin{array}{*{9}{l}}
 +
\mathrm{r}f_{8}
 +
& = & u \!\cdot\! v \cdot ~ \mathrm{d}u \cdot \mathrm{d}v ~~~~~~
 +
& + & u \texttt{(} v \texttt{)} \cdot \, \mathrm{d}u \cdot \mathrm{d}v \,
 +
& + & \texttt{(} u \texttt{)} v \cdot \, \mathrm{d}u \cdot \mathrm{d}v \,
 +
& + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot \, \mathrm{d}u \cdot \mathrm{d}v
 +
\end{array}</math>
 +
|}
 +
 
 +
<br>
 +
 
 +
=====Computation Summary for Conjunction=====
 +
 
 +
<br>
 +
 
 +
{| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%"
 +
|+ style="height:30px" | <math>\text{Table F8.6} ~~ \text{Computation Summary for}~ f_{8}\!</math>
 +
|
 +
<math>\begin{array}{c*{8}{l}}
 +
\boldsymbol\varepsilon f_{8}
 +
& = & u \!\cdot\! v \cdot 1
 +
& + & u \texttt{(} v \texttt{)} \cdot 0
 +
& + & \texttt{(} u \texttt{)} v \cdot 0
 +
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0
 +
\\[6pt]
 +
\mathrm{E}f_{8}
 +
& = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)}
 +
& + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v
 +
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)}
 +
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v
 +
\\[6pt]
 +
\mathrm{D}f_{8}
 +
& = & u \!\cdot\! v \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))}
 +
& + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v
 +
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)}
 +
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v
 +
\\[6pt]
 +
\mathrm{d}f_{8}
 +
& = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
 +
& + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v
 +
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u
 +
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0
 +
\\[6pt]
 +
\mathrm{r}f_{8}
 +
& = & u \!\cdot\! v \cdot \mathrm{d}u \cdot \mathrm{d}v
 +
& + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v
 +
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \cdot \mathrm{d}v
 +
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v
 +
\end{array}</math>
 
|}
 
|}
    
<br>
 
<br>
  −
===Appendix 2. Computational Details===
      
====Operator Maps for the Logical Disjunction ''f''(u, v)====
 
====Operator Maps for the Logical Disjunction ''f''(u, v)====
   −
=====Computation of &ldquo;&epsilon;f&rdquo;=====
+
=====Computation of &epsilon;''f''=====
 
  −
=====Computation of &ldquo;Ef&rdquo;=====
     −
=====Computation of &ldquo;Df&rdquo; (1)=====
+
=====Computation of E''f''=====
   −
=====Computation of &ldquo;Df&rdquo; (2)=====
+
=====Computation of D''f''=====
   −
=====Computation of &ldquo;df&rdquo;=====
+
=====Computation of d''f''=====
   −
=====Computation of &ldquo;rf&rdquo;=====
+
=====Computation of r''f''=====
    
=====Computation Summary for Disjunction=====
 
=====Computation Summary for Disjunction=====
Line 10,449: Line 10,730:  
====Operator Maps for the Logical Equality ''g''(u, v)====
 
====Operator Maps for the Logical Equality ''g''(u, v)====
   −
======Computation of &ldquo;&epsilon;g&rdquo;======
+
=====Computation of &epsilon;''g''=====
 
  −
=====Computation of &ldquo;Eg&rdquo;=====
     −
=====Computation of &ldquo;Dg&rdquo; (1)=====
+
=====Computation of E''g''=====
   −
=====Computation of &ldquo;Dg&rdquo; (2)=====
+
=====Computation of D''g''=====
   −
=====Computation of &ldquo;dg&rdquo;=====
+
=====Computation of d''g''=====
   −
=====Computation of &ldquo;rg&rdquo;=====
+
=====Computation of r''g''=====
    
=====Computation Summary for Equality=====
 
=====Computation Summary for Equality=====
Line 10,503: Line 10,782:  
<br>
 
<br>
   −
===Appendix 3. Source Materials===
+
===Appendix 4. Source Materials===
   −
===Appendix 4. Various Definitions of the Tangent Vector===
+
===Appendix 5. Various Definitions of the Tangent Vector===
    
==References==
 
==References==
12,080

edits

Navigation menu