Line 7,030: |
Line 7,030: |
| <br> | | <br> |
| | | |
− | But these initial formulas are purely definitional, and help us little in understanding either the purpose of the operators or the meaning of their results. Working symbolically, let us apply the same method to the separate components <math>f\!</math> and <math>g\!</math> that we earlier used on <math>J.\!</math> This work is recorded in Appendix 1 and a summary of the results is presented in Tables 66-i and 66-ii. | + | But these initial formulas are purely definitional, and help us little in understanding either the purpose of the operators or the meaning of their results. Working symbolically, let us apply the same method to the separate components <math>f\!</math> and <math>g\!</math> that we earlier used on <math>J.\!</math> This work is recorded in Appendix 3 and a summary of the results is presented in Tables 66-i and 66-ii. |
| | | |
| <br> | | <br> |
Line 8,909: |
Line 8,909: |
| <br> | | <br> |
| | | |
− | ====Differential Forms==== | + | ===Appendix 2. Differential Forms=== |
| | | |
| The actions of the difference operator <math>\mathrm{D}\!</math> and the tangent operator <math>\mathrm{d}\!</math> on the 16 bivariate propositions are shown in Tables A7 and A8. | | The actions of the difference operator <math>\mathrm{D}\!</math> and the tangent operator <math>\mathrm{d}\!</math> on the 16 bivariate propositions are shown in Tables A7 and A8. |
Line 9,280: |
Line 9,280: |
| <br> | | <br> |
| | | |
− | ====Table A9. Differential = Pointwise Linear Approximation to the Difference==== | + | ====Table A9. Tangent Proposition as Pointwise Linear Approximation==== |
− | | |
− | ====Table A10. Taylor Series Expansion====
| |
| | | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%" |
− | |+ style="height:30px" | | + | |+ style="height:30px" | <math>\text{Table A9.} ~~ \text{Tangent Proposition}~ \mathrm{d}f = \text{Pointwise Linear Approximation to the Difference Map}~ \mathrm{D}f\!</math> |
− | <math>\text{Table A10.} ~~ \text{Taylor Series Expansion}~ {\mathrm{D}f = \mathrm{d}f + \mathrm{d}^2\!f}\!</math> | |
| |- style="background:ghostwhite; height:40px" | | |- style="background:ghostwhite; height:40px" |
| | style="border-right:none" | <math>f\!</math> | | | style="border-right:none" | <math>f\!</math> |
| | style="border-left:4px double black" | | | | style="border-left:4px double black" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \mathrm{D}f | + | \mathrm{d}f = |
− | \\
| + | \\[2pt] |
− | = & \mathrm{d}f & + & \mathrm{d}^2\!f | + | \partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y |
− | \\ | + | \end{matrix}</math> |
− | = & \partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y & + & \partial_{xy} f \cdot \mathrm{d}x\;\mathrm{d}y
| + | | |
− | \end{matrix}\!</math> | + | <math>\begin{matrix} |
| + | \mathrm{d}^2\!f = |
| + | \\[2pt] |
| + | \partial_{xy} f \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \end{matrix}</math> |
| | <math>\mathrm{d}f|_{x \, y}</math> | | | <math>\mathrm{d}f|_{x \, y}</math> |
| | <math>\mathrm{d}f|_{x \, \texttt{(} y \texttt{)}}</math> | | | <math>\mathrm{d}f|_{x \, \texttt{(} y \texttt{)}}</math> |
Line 9,306: |
Line 9,307: |
| | style="border-right:none" | <math>f_0\!</math> | | | style="border-right:none" | <math>f_0\!</math> |
| | style="border-left:4px double black" | <math>0\!</math> | | | style="border-left:4px double black" | <math>0\!</math> |
| + | | <math>0\!</math> |
| | <math>0\!</math> | | | <math>0\!</math> |
| | <math>0\!</math> | | | <math>0\!</math> |
Line 9,311: |
Line 9,313: |
| | <math>0\!</math> | | | <math>0\!</math> |
| |- | | |- |
− | | style="border-right:none" | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}\!</math> | + | | style="border-right:none" | |
| + | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}\!</math> |
| | style="border-left:4px double black" | | | | style="border-left:4px double black" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & | + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y |
− | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & | |
− | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
| |
| \\ | | \\ |
− | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & | + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y |
− | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & | |
− | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
| |
| \\ | | \\ |
− | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & | + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y |
− | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & | |
− | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
| |
| \\ | | \\ |
− | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & | + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y |
− | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & | |
− | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
| + | \mathrm{d}x\;\mathrm{d}y |
− | \end{matrix}</math> | + | \\ |
− | |
| + | \mathrm{d}x\;\mathrm{d}y |
− | <math>\begin{matrix}
| + | \\ |
− | \mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y | + | \mathrm{d}x\;\mathrm{d}y |
− | \end{matrix}</math> | + | \\ |
− | |
| + | \mathrm{d}x\;\mathrm{d}y |
− | <math>\begin{matrix}
| |
− | \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x | |
− | \end{matrix}</math> | |
− | |
| |
− | <math>\begin{matrix}
| |
− | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0 | |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | | <math>\begin{matrix}0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0\end{matrix}</math> |
| + | |- |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> |
| + | | <math>\begin{matrix}0\\0\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> |
| + | |- |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix}\mathrm{d}x & + & \mathrm{d}y\\\mathrm{d}x & + & \mathrm{d}y\end{matrix}</math> |
| + | | <math>\begin{matrix}0\\0\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> |
| + | |- |
| + | | style="border-right:none" | |
| + | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}\!</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math> |
| + | | <math>\begin{matrix}0\\0\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math> |
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math> |
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math> |
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}\!</math> |
| |- | | |- |
− | | style="border-right:none" | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> | + | | style="border-right:none" | |
| + | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> |
| | style="border-left:4px double black" | | | | style="border-left:4px double black" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & | + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y |
− | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + & | + | \\ |
− | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y |
| + | \end{matrix}\!</math> |
| + | | <math>\begin{matrix} |
| + | \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \mathrm{d}x\;\mathrm{d}y |
| \\ | | \\ |
− | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + &
| + | \mathrm{d}x\;\mathrm{d}y |
− | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + &
| |
− | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
| |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | | + | | <math>\begin{matrix}\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\end{matrix}</math> |
| + | | <math>\begin{matrix}0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\end{matrix}</math> |
| + | |- |
| + | | style="border-right:none" | <math>f_{15}\!</math> |
| + | | style="border-left:4px double black" | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ====Table A10. Taylor Series Expansion Df = d''f'' + d<sup>2</sup>''f''==== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table A10.} ~~ \text{Taylor Series Expansion}~ {\mathrm{D}f = \mathrm{d}f + \mathrm{d}^2\!f}\!</math> |
| + | |- style="background:ghostwhite; height:40px" |
| + | | style="border-right:none" | <math>f\!</math> |
| + | | style="border-left:4px double black" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \mathrm{d}x\\\mathrm{d}x | + | \mathrm{D}f |
− | \end{matrix}</math>
| + | \\ |
− | |
| + | = & \mathrm{d}f & + & \mathrm{d}^2\!f |
− | <math>\begin{matrix}
| + | \\ |
− | \mathrm{d}x\\\mathrm{d}x | + | = & \partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y & + & \partial_{xy} f \cdot \mathrm{d}x\;\mathrm{d}y |
− | \end{matrix}</math> | |
− | |
| |
− | <math>\begin{matrix}
| |
− | \mathrm{d}x\\\mathrm{d}x | |
− | \end{matrix}</math> | |
− | |
| |
− | <math>\begin{matrix}
| |
− | \mathrm{d}x\\\mathrm{d}x | |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | | <math>\mathrm{d}f|_{x \, y}</math> |
| + | | <math>\mathrm{d}f|_{x \, \texttt{(} y \texttt{)}}</math> |
| + | | <math>\mathrm{d}f|_{\texttt{(} x \texttt{)} \, y}</math> |
| + | | <math>\mathrm{d}f|_{\texttt{(} x \texttt{)(} y \texttt{)}}</math> |
| + | |- |
| + | | style="border-right:none" | <math>f_0\!</math> |
| + | | style="border-left:4px double black" | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| |- | | |- |
− | | style="border-right:none" | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> | + | | style="border-right:none" | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}</math> |
| | style="border-left:4px double black" | | | | style="border-left:4px double black" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & | + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & |
− | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & | + | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & |
− | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & |
| + | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| \\ | | \\ |
− | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & | + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & |
− | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & | + | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & |
− | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y | + | 0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y | + | \mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y | + | \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y | + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0 |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
− | | style="border-right:none" | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}\!</math> | + | | style="border-right:none" | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> |
| | style="border-left:4px double black" | | | | style="border-left:4px double black" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + & | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & |
− | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & | + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + & |
| \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| \\ | | \\ |
− | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + & | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & |
− | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & | + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + & |
| \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
− | \end{matrix}\!</math> | + | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \mathrm{d}y\\\mathrm{d}y | + | \mathrm{d}x\\\mathrm{d}x |
− | \end{matrix}\!</math> | + | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \mathrm{d}y\\\mathrm{d}y | + | \mathrm{d}x\\\mathrm{d}x |
− | \end{matrix}\!</math> | + | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \mathrm{d}y\\\mathrm{d}y | + | \mathrm{d}x\\\mathrm{d}x |
− | \end{matrix}\!</math> | + | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \mathrm{d}y\\\mathrm{d}y | + | \mathrm{d}x\\\mathrm{d}x |
− | \end{matrix}\!</math> | + | \end{matrix}</math> |
| |- | | |- |
− | | style="border-right:none" | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> | + | | style="border-right:none" | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> |
| | style="border-left:4px double black" | | | | style="border-left:4px double black" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & |
− | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & |
− | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| \\ | | \\ |
− | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + &
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & |
− | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + &
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & |
− | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
− | \\
| + | \end{matrix}</math> |
− | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + &
| |
− | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + &
| |
− | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | |
− | \\
| |
− | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + &
| |
− | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + &
| |
− | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y | |
− | \end{matrix}\!</math> | |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0 | + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x | + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y | + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
− | | style="border-right:none" | <math>f_{15}\!</math> | + | | style="border-right:none" | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}</math> |
− | | style="border-left:4px double black" | <math>0\!</math> | + | | style="border-left:4px double black" | |
− | | <math>0\!</math>
| + | <math>\begin{matrix} |
− | | <math>0\!</math>
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + & |
− | | <math>0\!</math>
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & |
− | | <math>0\!</math>
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
− | |}
| + | \\ |
− | | + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + & |
− | <br>
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & |
− | | + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
− | ====Table A11. Partial Differentials and Relative Differentials====
| + | \end{matrix}</math> |
− | | |
− | <br>
| |
− | | |
− | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%" | |
− | |+ style="height:30px" | <math>\text{Table A11.} ~~ \text{Partial Differentials and Relative Differentials}\!</math>
| |
− | |- style="background:ghostwhite; height:50px"
| |
− | |
| |
− | | <math>f\!</math>
| |
− | | <math>\frac{\partial f}{\partial x}</math>
| |
− | | <math>\frac{\partial f}{\partial y}</math>
| |
| | | | | |
− | <p><math>\operatorname{d}f =</math></p>
| + | <math>\begin{matrix} |
− | <p><math>\partial_x f \cdot \operatorname{d}x\ +\ \partial_y f \cdot \operatorname{d}y</math></p>
| + | \mathrm{d}y\\\mathrm{d}y |
− | | <math>\left. \frac{\partial x}{\partial y} \right| f</math>
| + | \end{matrix}</math> |
− | | <math>\left. \frac{\partial y}{\partial x} \right| f</math>
| |
− | |- style="height:36px"
| |
− | | <math>f_0\!</math>
| |
− | | <math>(~)\!</math>
| |
− | | <math>0\!</math>
| |
− | | <math>0\!</math>
| |
− | | <math>0\!</math>
| |
− | | <math>0\!</math>
| |
− | | <math>0\!</math>
| |
− | |-
| |
| | | | | |
− | {| align="center" | + | <math>\begin{matrix} |
| + | \mathrm{d}y\\\mathrm{d}y |
| + | \end{matrix}</math> |
| | | | | |
− | <math>\begin{smallmatrix} | + | <math>\begin{matrix} |
− | f_{1} \\
| + | \mathrm{d}y\\\mathrm{d}y |
− | f_{2} \\
| + | \end{matrix}</math> |
− | f_{4} \\
| |
− | f_{8} \\
| |
− | \end{smallmatrix}</math> | |
− | |}
| |
| | | | | |
− | {| align="center" | + | <math>\begin{matrix} |
− | | | + | \mathrm{d}y\\\mathrm{d}y |
− | <math>\begin{smallmatrix} | + | \end{matrix}</math> |
− | (x) & (y) \\
| + | |- |
− | (x) & y \\
| + | | style="border-right:none" | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> |
− | x & (y) \\
| + | | style="border-left:4px double black" | |
− | x & y \\
| + | <math>\begin{matrix} |
− | \end{smallmatrix}</math> | + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & |
− | |}
| + | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & |
− | |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
− | {| align="center" | + | \\ |
− | |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & |
− | <math>\begin{smallmatrix}
| + | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & |
− | (y) \\ | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
− | y \\
| + | \\ |
− | (y) \\ | + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & |
− | y \\
| + | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & |
− | \end{smallmatrix}</math> | + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
− | |}
| + | \\ |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & |
| + | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \end{matrix}</math> |
| | | | | |
− | {| align="center" | + | <math>\begin{matrix} |
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0 |
| + | \end{matrix}</math> |
| | | | | |
− | <math>\begin{smallmatrix} | + | <math>\begin{matrix} |
− | (x) \\
| + | \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x |
− | (x) \\
| + | \end{matrix}</math> |
− | x \\
| |
− | x \\
| |
− | \end{smallmatrix}</math> | |
− | |}
| |
| | | | | |
− | {| align="center" | + | <math>\begin{matrix} |
| + | \mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y |
| + | \end{matrix}</math> |
| | | | | |
− | <math>\begin{smallmatrix} | + | <math>\begin{matrix} |
− | (y) & \operatorname{d}x & + & (x) & \operatorname{d}y \\
| + | 0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
− | y & \operatorname{d}x & + & (x) & \operatorname{d}y \\
| + | \end{matrix}</math> |
− | (y) & \operatorname{d}x & + & x & \operatorname{d}y \\
| + | |- |
− | y & \operatorname{d}x & + & x & \operatorname{d}y \\
| + | | style="border-right:none" | <math>f_{15}\!</math> |
− | \end{smallmatrix}</math> | + | | style="border-left:4px double black" | <math>0\!</math> |
− | |} | + | | <math>0\!</math> |
− | |
| + | | <math>0\!</math> |
− | {| align="center" | + | | <math>0\!</math> |
− | | | + | | <math>0\!</math> |
− | <math>\begin{smallmatrix} | + | |} |
− | ~ \\ | + | |
− | ~ \\
| + | <br> |
− | ~ \\
| + | |
− | ~ \\
| + | ====Table A11. Partial Differentials and Relative Differentials==== |
− | \end{smallmatrix}</math> | + | |
− | |}
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table A11.} ~~ \text{Partial Differentials and Relative Differentials}\!</math> |
| + | |- style="background:ghostwhite; height:50px" |
| + | | |
| + | | <math>f\!</math> |
| + | | <math>\frac{\partial f}{\partial x}\!</math> |
| + | | <math>\frac{\partial f}{\partial y}\!</math> |
| | | | | |
− | {| align="center" | + | <math>\begin{matrix} |
− | | | + | \mathrm{d}f = |
− | <math>\begin{smallmatrix} | + | \\[2pt] |
− | ~ \\
| + | \partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y |
− | ~ \\
| + | \end{matrix}</math> |
− | ~ \\ | + | | <math>\left. \frac{\partial x}{\partial y} \right| f\!</math> |
− | ~ \\
| + | | <math>\left. \frac{\partial y}{\partial x} \right| f\!</math> |
− | \end{smallmatrix}</math> | + | |- |
− | |} | + | | <math>f_0\!</math> |
| + | | <math>\texttt{(~)}\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| |- | | |- |
| + | | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}</math> |
| | | | | |
− | {| align="center"
| + | <math>\begin{matrix} |
− | |
| + | \texttt{(} x \texttt{)(} y \texttt{)} |
− | <math>\begin{smallmatrix} | + | \\ |
− | f_{3} \\
| + | \texttt{(} x \texttt{)~} y \texttt{~} |
− | f_{12} \\
| + | \\ |
− | \end{smallmatrix}</math> | + | \texttt{~} x \texttt{~(} y \texttt{)} |
− | |}
| + | \\ |
− | |
| + | \texttt{~} x \texttt{~~} y \texttt{~} |
− | {| align="center"
| + | \end{matrix}</math> |
| | | | | |
− | <math>\begin{smallmatrix} | + | <math>\begin{matrix} |
− | (x) \\ | + | \texttt{(} y \texttt{)} |
− | x \\
| + | \\ |
− | \end{smallmatrix}</math> | + | \texttt{~} y \texttt{~} |
− | |}
| + | \\ |
| + | \texttt{(} y \texttt{)} |
| + | \\ |
| + | \texttt{~} y \texttt{~} |
| + | \end{matrix}</math> |
| | | | | |
− | {| align="center" | + | <math>\begin{matrix} |
| + | \texttt{(} x \texttt{)} |
| + | \\ |
| + | \texttt{(} x \texttt{)} |
| + | \\ |
| + | \texttt{~} x \texttt{~} |
| + | \\ |
| + | \texttt{~} x \texttt{~} |
| + | \end{matrix}</math> |
| | | | | |
− | <math>\begin{smallmatrix} | + | <math>\begin{matrix} |
− | 1 \\
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y |
− | 1 \\
| + | \\ |
− | \end{smallmatrix}</math> | + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y |
− | |} | + | \\ |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | <math>\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}</math> |
| + | | <math>\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> |
| | | | | |
− | {| align="center" | + | <math>\begin{matrix} |
− | | | + | \texttt{(} x \texttt{)} |
− | <math>\begin{smallmatrix} | + | \\ |
− | 0 \\
| + | \texttt{~} x \texttt{~} |
− | 0 \\
| + | \end{matrix}</math> |
− | \end{smallmatrix}</math> | + | | <math>\begin{matrix}1\\1\end{matrix}</math> |
− | |} | + | | <math>\begin{matrix}0\\0\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x\\\mathrm{d}x\end{matrix}</math> |
| + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> |
| + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> |
| | | | | |
− | {| align="center" | + | <math>\begin{matrix} |
| + | \texttt{~(} x \texttt{,~} y \texttt{)~} |
| + | \\ |
| + | \texttt{((} x \texttt{,~} y \texttt{))} |
| + | \end{matrix}</math> |
| + | | <math>\begin{matrix}1\\1\end{matrix}</math> |
| + | | <math>\begin{matrix}1\\1\end{matrix}</math> |
| + | | <math>\begin{matrix}\mathrm{d}x & + & \mathrm{d}y\\\mathrm{d}x & + & \mathrm{d}y\end{matrix}</math> |
| + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> |
| + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> |
| + | |- |
| + | | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}</math> |
| | | | | |
− | <math>\begin{smallmatrix} | + | <math>\begin{matrix} |
− | \operatorname{d}x \\ | + | \texttt{(} y \texttt{)} |
− | \operatorname{d}x \\ | + | \\ |
− | \end{smallmatrix}</math> | + | \texttt{~} y \texttt{~} |
− | |} | + | \end{matrix}</math> |
− | | | + | | <math>\begin{matrix}0\\0\end{matrix}</math> |
− | {| align="center" | + | | <math>\begin{matrix}1\\1\end{matrix}</math> |
− | | | + | | <math>\begin{matrix}\mathrm{d}y\\\mathrm{d}y\end{matrix}</math> |
− | <math>\begin{smallmatrix} | + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> |
− | ~ \\
| + | | <math>\begin{matrix}\cdots\\\cdots\end{matrix}</math> |
− | ~ \\
| |
− | \end{smallmatrix}</math> | |
− | |} | |
− | |
| |
− | {| align="center" | |
− | | | |
− | <math>\begin{smallmatrix} | |
− | ~ \\
| |
− | ~ \\
| |
− | \end{smallmatrix}</math> | |
− | |}
| |
| |- | | |- |
| + | | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> |
| | | | | |
− | {| align="center" | + | <math>\begin{matrix} |
| + | \texttt{(~} x \texttt{~~} y \texttt{~)} |
| + | \\ |
| + | \texttt{(~} x \texttt{~(} y \texttt{))} |
| + | \\ |
| + | \texttt{((} x \texttt{)~} y \texttt{~)} |
| + | \\ |
| + | \texttt{((} x \texttt{)(} y \texttt{))} |
| + | \end{matrix}</math> |
| | | | | |
− | <math>\begin{smallmatrix} | + | <math>\begin{matrix} |
− | f_{6} \\
| + | \texttt{~} y \texttt{~} |
− | f_{9} \\
| + | \\ |
− | \end{smallmatrix}</math> | + | \texttt{(} y \texttt{)} |
− | |}
| + | \\ |
− | |
| + | \texttt{~} y \texttt{~} |
− | {| align="center"
| + | \\ |
| + | \texttt{(} y \texttt{)} |
| + | \end{matrix}</math> |
| | | | | |
− | <math>\begin{smallmatrix} | + | <math>\begin{matrix} |
− | (x, & y) \\
| + | \texttt{~} x \texttt{~} |
− | ((x, & y)) \\ | + | \\ |
− | \end{smallmatrix}</math> | + | \texttt{~} x \texttt{~} |
− | |}
| + | \\ |
| + | \texttt{(} x \texttt{)} |
| + | \\ |
| + | \texttt{(} x \texttt{)} |
| + | \end{matrix}</math> |
| | | | | |
− | {| align="center"
| + | <math>\begin{matrix} |
− | |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y |
− | <math>\begin{smallmatrix} | + | \\ |
− | 1 \\
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{~} x \texttt{~} \cdot \mathrm{d}y |
− | 1 \\
| + | \\ |
− | \end{smallmatrix}</math> | + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y |
− | |}
| + | \\ |
− | |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & \texttt{(} x \texttt{)} \cdot \mathrm{d}y |
− | {| align="center" | + | \end{matrix}</math> |
− | |
| + | | <math>\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}</math> |
− | <math>\begin{smallmatrix}
| + | | <math>\begin{matrix}\cdots\\\cdots\\\cdots\\\cdots\end{matrix}</math> |
− | 1 \\
| + | |- |
− | 1 \\
| + | | <math>f_{15}\!</math> |
− | \end{smallmatrix}</math> | + | | <math>\texttt{((~))}\!</math> |
− | |}
| + | | <math>0\!</math> |
− | |
| + | | <math>0\!</math> |
− | {| align="center" | + | | <math>0\!</math> |
− | |
| + | | <math>0\!</math> |
− | <math>\begin{smallmatrix}
| + | | <math>0\!</math> |
− | \operatorname{d}x & + & \operatorname{d}y \\ | |
− | \operatorname{d}x & + & \operatorname{d}y \\ | |
− | \end{smallmatrix}</math> | |
− | |} | |
− | |
| |
− | {| align="center"
| |
− | |
| |
− | <math>\begin{smallmatrix} | |
− | ~ \\
| |
− | ~ \\
| |
− | \end{smallmatrix}</math> | |
− | |} | |
− | |
| |
− | {| align="center"
| |
− | |
| |
− | <math>\begin{smallmatrix} | |
− | ~ \\
| |
− | ~ \\
| |
− | \end{smallmatrix}</math> | |
− | |}
| |
− | |- | |
− | | | |
− | {| align="center"
| |
− | |
| |
− | <math>\begin{smallmatrix} | |
− | f_{5} \\
| |
− | f_{10} \\ | |
− | \end{smallmatrix}</math>
| |
− | |} | |
− | |
| |
− | {| align="center"
| |
− | |
| |
− | <math>\begin{smallmatrix} | |
− | (y) \\ | |
− | y \\
| |
− | \end{smallmatrix}</math>
| |
− | |} | |
− | |
| |
− | {| align="center"
| |
− | |
| |
− | <math>\begin{smallmatrix} | |
− | 0 \\
| |
− | 0 \\ | |
− | \end{smallmatrix}</math>
| |
− | |} | |
− | |
| |
− | {| align="center"
| |
− | |
| |
− | <math>\begin{smallmatrix} | |
− | 1 \\
| |
− | 1 \\
| |
− | \end{smallmatrix}</math>
| |
− | |} | |
− | |
| |
− | {| align="center"
| |
− | |
| |
− | <math>\begin{smallmatrix} | |
− | \operatorname{d}y \\
| |
− | \operatorname{d}y \\
| |
− | \end{smallmatrix}</math>
| |
− | |} | |
− | |
| |
− | {| align="center"
| |
− | |
| |
− | <math>\begin{smallmatrix} | |
− | ~ \\
| |
− | ~ \\
| |
− | \end{smallmatrix}</math>
| |
− | |} | |
− | |
| |
− | {| align="center"
| |
− | |
| |
− | <math>\begin{smallmatrix} | |
− | ~ \\
| |
− | ~ \\
| |
− | \end{smallmatrix}</math>
| |
| |} | | |} |
| + | |
| + | <br> |
| + | |
| + | ====Table A12. Detail of Calculation for the Difference Map==== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellpadding="6" cellspacing="0" style="border-bottom:4px double black; border-left:4px double black; border-right:4px double black; border-top:4px double black; text-align:center; width:80%" |
| + | |+ style="height:30px" | <math>\text{Table A12.} ~~ \text{Detail of Calculation for}~ {\mathrm{E}f + f = \mathrm{D}f}\!</math> |
| + | |- style="background:ghostwhite" |
| + | | style="width:6%" | |
| + | | style="width:14%; border-left:1px solid black" | <math>f\!</math> |
| + | | style="width:20%; border-left:4px double black" | |
| + | <math>\begin{array}{cr} |
| + | ~ & \mathrm{E}f|_{\mathrm{d}x ~ \mathrm{d}y} |
| + | \\[4pt] |
| + | + & f|_{\mathrm{d}x ~ \mathrm{d}y} |
| + | \\[4pt] |
| + | = & \mathrm{D}f|_{\mathrm{d}x ~ \mathrm{d}y} |
| + | \end{array}</math> |
| + | | style="width:20%; border-left:1px solid black" | |
| + | <math>\begin{array}{cr} |
| + | ~ & \mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y} |
| + | \\[4pt] |
| + | + & f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y} |
| + | \\[4pt] |
| + | = & \mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y} |
| + | \end{array}</math> |
| + | | style="width:20%; border-left:1px solid black" | |
| + | <math>\begin{array}{cr} |
| + | ~ & \mathrm{E}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}} |
| + | \\[4pt] |
| + | + & f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}} |
| + | \\[4pt] |
| + | = & \mathrm{D}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}} |
| + | \end{array}</math> |
| + | | style="width:20%; border-left:1px solid black" | |
| + | <math>\begin{array}{cr} |
| + | ~ & \mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}} |
| + | \\[4pt] |
| + | + & f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}} |
| + | \\[4pt] |
| + | = & \mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}} |
| + | \end{array}</math> |
| |- | | |- |
− | | | + | | style="border-top:4px double black" | <math>f_{0}\!</math> |
− | {| align="center"
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>0\!</math> |
− | | | + | | style="border-top:4px double black; border-left:4px double black" | <math>0 ~+~ 0 ~=~ 0\!</math> |
− | <math>\begin{smallmatrix} | + | | style="border-top:4px double black; border-left:1px solid black" | <math>0 ~+~ 0 ~=~ 0\!</math> |
− | f_{7} \\ | + | | style="border-top:4px double black; border-left:1px solid black" | <math>0 ~+~ 0 ~=~ 0\!</math> |
− | f_{11} \\
| + | | style="border-top:4px double black; border-left:1px solid black" | <math>0 ~+~ 0 ~=~ 0\!</math> |
− | f_{13} \\
| + | |- |
− | f_{14} \\
| + | | style="border-top:4px double black" | <math>f_{1}\!</math> |
− | \end{smallmatrix}</math>
| + | | style="border-top:4px double black; border-left:1px solid black" | |
− | |} | + | <math>\texttt{~(} x \texttt{)(} y \texttt{)~}\!</math> |
− | |
| + | | style="border-top:4px double black; border-left:4px double black" | |
− | {| align="center"
| + | <math>\begin{matrix} |
− | | | + | ~ & \texttt{~~} x \texttt{~~} y \texttt{~~} |
− | <math>\begin{smallmatrix} | + | \\[4pt] |
− | (x & y) \\
| + | + & \texttt{~(} x \texttt{)(} y \texttt{)~} |
− | (x & (y)) \\
| + | \\[4pt] |
− | ((x) & y) \\
| + | = & \texttt{((} x \texttt{,~} y \texttt{))} |
− | ((x) & (y)) \\
| + | \end{matrix}</math> |
− | \end{smallmatrix}</math>
| + | | style="border-top:4px double black; border-left:1px solid black" | |
− | |} | + | <math>\begin{matrix} |
− | |
| + | ~ & \texttt{~~} x \texttt{~(} y \texttt{)~} |
− | {| align="center"
| + | \\[4pt] |
− | | | + | + & \texttt{~(} x \texttt{)(} y \texttt{)~} |
− | <math>\begin{smallmatrix} | |
− | y \\
| |
− | (y) \\
| |
− | y \\
| |
− | (y) \\
| |
− | \end{smallmatrix}</math>
| |
− | |} | |
− | |
| |
− | {| align="center"
| |
− | |
| |
− | <math>\begin{smallmatrix}
| |
− | x \\
| |
− | x \\
| |
− | (x) \\
| |
− | (x) \\
| |
− | \end{smallmatrix}</math>
| |
− | |}
| |
− | |
| |
− | {| align="center"
| |
− | | | |
− | <math>\begin{smallmatrix} | |
− | y & \operatorname{d}x & + & x & \operatorname{d}y \\
| |
− | (y) & \operatorname{d}x & + & x & \operatorname{d}y \\
| |
− | y & \operatorname{d}x & + & (x) & \operatorname{d}y \\
| |
− | (y) & \operatorname{d}x & + & (x) & \operatorname{d}y \\
| |
− | \end{smallmatrix}</math>
| |
− | |} | |
− | |
| |
− | {| align="center"
| |
− | | | |
− | <math>\begin{smallmatrix} | |
− | ~ \\ | |
− | ~ \\ | |
− | ~ \\ | |
− | ~ \\ | |
− | \end{smallmatrix}</math>
| |
− | |} | |
− | |
| |
− | {| align="center"
| |
− | | | |
− | <math>\begin{smallmatrix} | |
− | ~ \\ | |
− | ~ \\ | |
− | ~ \\ | |
− | ~ \\ | |
− | \end{smallmatrix}</math>
| |
− | |} | |
− | |- style="height:36px" | |
− | | <math>f_{15}\!</math> | |
− | | <math>((~))\!</math> | |
− | | <math>0\!</math> | |
− | | <math>0\!</math>
| |
− | | <math>0\!</math>
| |
− | | <math>0\!</math>
| |
− | | <math>0\!</math>
| |
− | |} | |
− | | |
− | <br>
| |
− | | |
− | ====Table A12. Detail of Calculation for the Difference Map====
| |
− | | |
− | <br>
| |
− | | |
− | {| align="center" cellpadding="6" cellspacing="0" style="border-bottom:4px double black; border-left:4px double black; border-right:4px double black; border-top:4px double black; text-align:center; width:80%"
| |
− | |+ style="height:30px" | <math>\text{Table A12.} ~~ \text{Detail of Calculation for}~ {\mathrm{E}f + f = \mathrm{D}f}\!</math>
| |
− | |- style="background:ghostwhite"
| |
− | | style="width:6%" |
| |
− | | style="width:14%; border-left:1px solid black" | <math>f\!</math>
| |
− | | style="width:20%; border-left:4px double black" | | |
− | <math>\begin{array}{cr} | |
− | ~ & \mathrm{E}f|_{\mathrm{d}x ~ \mathrm{d}y} | |
| \\[4pt] | | \\[4pt] |
− | + & f|_{\mathrm{d}x ~ \mathrm{d}y}
| + | = & \texttt{~~} ~ \texttt{~(} y \texttt{)~} |
| + | \end{matrix}</math> |
| + | | style="border-top:4px double black; border-left:1px solid black" | |
| + | <math>\begin{matrix} |
| + | ~ & \texttt{~(} x \texttt{)~} y \texttt{~~} |
| \\[4pt] | | \\[4pt] |
− | = & \mathrm{D}f|_{\mathrm{d}x ~ \mathrm{d}y}
| + | + & \texttt{~(} x \texttt{)(} y \texttt{)~} |
− | \end{array}</math>
| |
− | | style="width:20%; border-left:1px solid black" |
| |
− | <math>\begin{array}{cr}
| |
− | ~ & \mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y}
| |
| \\[4pt] | | \\[4pt] |
− | + & f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y}
| + | = & \texttt{~(} x \texttt{)~} ~ \texttt{~~} |
− | \\[4pt]
| + | \end{matrix}</math> |
− | = & \mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)} \mathrm{d}y} | |
− | \end{array}</math>
| |
− | | style="width:20%; border-left:1px solid black" |
| |
− | <math>\begin{array}{cr}
| |
− | ~ & \mathrm{E}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}} | |
− | \\[4pt]
| |
− | + & f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}}
| |
− | \\[4pt]
| |
− | = & \mathrm{D}f|_{\mathrm{d}x \texttt{(} \mathrm{d}y \texttt{)}}
| |
− | \end{array}</math>
| |
− | | style="width:20%; border-left:1px solid black" |
| |
− | <math>\begin{array}{cr}
| |
− | ~ & \mathrm{E}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}} | |
− | \\[4pt]
| |
− | + & f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}}
| |
− | \\[4pt]
| |
− | = & \mathrm{D}f|_{\texttt{(} \mathrm{d}x \texttt{)(} \mathrm{d}y \texttt{)}}
| |
− | \end{array}</math> | |
− | |-
| |
− | | style="border-top:4px double black" | <math>f_{0}\!</math>
| |
− | | style="border-top:4px double black; border-left:1px solid black" | <math>0\!</math>
| |
− | | style="border-top:4px double black; border-left:4px double black" | <math>0 ~+~ 0 ~=~ 0\!</math>
| |
− | | style="border-top:4px double black; border-left:1px solid black" | <math>0 ~+~ 0 ~=~ 0\!</math>
| |
− | | style="border-top:4px double black; border-left:1px solid black" | <math>0 ~+~ 0 ~=~ 0\!</math>
| |
− | | style="border-top:4px double black; border-left:1px solid black" | <math>0 ~+~ 0 ~=~ 0\!</math>
| |
− | |-
| |
− | | style="border-top:4px double black" | <math>f_{1}\!</math>
| |
| | style="border-top:4px double black; border-left:1px solid black" | | | | style="border-top:4px double black; border-left:1px solid black" | |
− | <math>\texttt{~(} x \texttt{)(} y \texttt{)~}\!</math>
| |
− | | style="border-top:4px double black; border-left:4px double black" |
| |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~ & \texttt{~~} x \texttt{~~} y \texttt{~~} | + | ~ & \texttt{~(} x \texttt{)(} y \texttt{)~} |
| \\[4pt] | | \\[4pt] |
| + & \texttt{~(} x \texttt{)(} y \texttt{)~} | | + & \texttt{~(} x \texttt{)(} y \texttt{)~} |
| \\[4pt] | | \\[4pt] |
− | = & \texttt{((} x \texttt{,~} y \texttt{))} | + | = & 0 |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | style="border-top:4px double black; border-left:1px solid black" |
| + | |- |
− | <math>\begin{matrix}
| + | | style="border-top:1px solid black" | <math>f_{2}\!</math> |
− | ~ & \texttt{~~} x \texttt{~(} y \texttt{)~}
| + | | style="border-top:1px solid black; border-left:1px solid black" | |
− | \\[4pt]
| |
− | + & \texttt{~(} x \texttt{)(} y \texttt{)~}
| |
− | \\[4pt]
| |
− | = & \texttt{~~} ~ \texttt{~(} y \texttt{)~}
| |
− | \end{matrix}</math>
| |
− | | style="border-top:4px double black; border-left:1px solid black" |
| |
− | <math>\begin{matrix}
| |
− | ~ & \texttt{~(} x \texttt{)~} y \texttt{~~}
| |
− | \\[4pt]
| |
− | + & \texttt{~(} x \texttt{)(} y \texttt{)~}
| |
− | \\[4pt]
| |
− | = & \texttt{~(} x \texttt{)~} ~ \texttt{~~}
| |
− | \end{matrix}</math>
| |
− | | style="border-top:4px double black; border-left:1px solid black" |
| |
− | <math>\begin{matrix}
| |
− | ~ & \texttt{~(} x \texttt{)(} y \texttt{)~}
| |
− | \\[4pt]
| |
− | + & \texttt{~(} x \texttt{)(} y \texttt{)~}
| |
− | \\[4pt]
| |
− | = & 0
| |
− | \end{matrix}</math>
| |
− | |- | |
− | | style="border-top:1px solid black" | <math>f_{2}\!</math> | |
− | | style="border-top:1px solid black; border-left:1px solid black" | | |
| <math>\texttt{~(} x \texttt{)~} y \texttt{~~}\!</math> | | <math>\texttt{~(} x \texttt{)~} y \texttt{~~}\!</math> |
| | style="border-top:1px solid black; border-left:4px double black" | | | | style="border-top:1px solid black; border-left:4px double black" | |
Line 10,350: |
Line 10,292: |
| ~ & \texttt{~(} x \texttt{~~} y \texttt{)~} | | ~ & \texttt{~(} x \texttt{~~} y \texttt{)~} |
| \\[4pt] | | \\[4pt] |
− | + & \texttt{((} x \texttt{)(} y \texttt{))} | + | + & \texttt{((} x \texttt{)(} y \texttt{))} |
− | \\[4pt] | + | \\[4pt] |
− | = & \texttt{((} x \texttt{,~} y \texttt{))} | + | = & \texttt{((} x \texttt{,~} y \texttt{))} |
− | \end{matrix}</math> | + | \end{matrix}</math> |
− | | style="border-top:1px solid black; border-left:1px solid black" | | + | | style="border-top:1px solid black; border-left:1px solid black" | |
− | <math>\begin{matrix} | + | <math>\begin{matrix} |
− | ~ & \texttt{~(} x \texttt{~(} y \texttt{))} | + | ~ & \texttt{~(} x \texttt{~(} y \texttt{))} |
− | \\[4pt] | + | \\[4pt] |
− | + & \texttt{((} x \texttt{)(} y \texttt{))} | + | + & \texttt{((} x \texttt{)(} y \texttt{))} |
− | \\[4pt] | + | \\[4pt] |
− | = & \texttt{~~} ~ \texttt{~(} y \texttt{)~} | + | = & \texttt{~~} ~ \texttt{~(} y \texttt{)~} |
− | \end{matrix}</math> | + | \end{matrix}</math> |
− | | style="border-top:1px solid black; border-left:1px solid black" | | + | | style="border-top:1px solid black; border-left:1px solid black" | |
− | <math>\begin{matrix} | + | <math>\begin{matrix} |
− | ~ & \texttt{((} x \texttt{)~} y \texttt{)~} | + | ~ & \texttt{((} x \texttt{)~} y \texttt{)~} |
− | \\[4pt] | + | \\[4pt] |
− | + & \texttt{((} x \texttt{)(} y \texttt{))} | + | + & \texttt{((} x \texttt{)(} y \texttt{))} |
− | \\[4pt] | + | \\[4pt] |
− | = & \texttt{~(} x \texttt{)~} ~ \texttt{~~} | + | = & \texttt{~(} x \texttt{)~} ~ \texttt{~~} |
− | \end{matrix}</math> | + | \end{matrix}</math> |
− | | style="border-top:1px solid black; border-left:1px solid black" | | + | | style="border-top:1px solid black; border-left:1px solid black" | |
− | <math>\begin{matrix} | + | <math>\begin{matrix} |
− | ~ & \texttt{((} x \texttt{)(} y \texttt{))} | + | ~ & \texttt{((} x \texttt{)(} y \texttt{))} |
− | \\[4pt] | + | \\[4pt] |
− | + & \texttt{((} x \texttt{)(} y \texttt{))} | + | + & \texttt{((} x \texttt{)(} y \texttt{))} |
− | \\[4pt] | + | \\[4pt] |
− | = & 0 | + | = & 0 |
− | \end{matrix}</math> | + | \end{matrix}</math> |
− | |- | + | |- |
− | | style="border-top:4px double black" | <math>f_{15}\!</math> | + | | style="border-top:4px double black" | <math>f_{15}\!</math> |
− | | style="border-top:4px double black; border-left:1px solid black" | <math>1\!</math> | + | | style="border-top:4px double black; border-left:1px solid black" | <math>1\!</math> |
− | | style="border-top:4px double black; border-left:4px double black" | <math>1 ~+~ 1 ~=~ 0\!</math> | + | | style="border-top:4px double black; border-left:4px double black" | <math>1 ~+~ 1 ~=~ 0\!</math> |
− | | style="border-top:4px double black; border-left:1px solid black" | <math>1 ~+~ 1 ~=~ 0\!</math> | + | | style="border-top:4px double black; border-left:1px solid black" | <math>1 ~+~ 1 ~=~ 0\!</math> |
− | | style="border-top:4px double black; border-left:1px solid black" | <math>1 ~+~ 1 ~=~ 0\!</math> | + | | style="border-top:4px double black; border-left:1px solid black" | <math>1 ~+~ 1 ~=~ 0\!</math> |
− | | style="border-top:4px double black; border-left:1px solid black" | <math>1 ~+~ 1 ~=~ 0\!</math> | + | | style="border-top:4px double black; border-left:1px solid black" | <math>1 ~+~ 1 ~=~ 0\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ===Appendix 3. Computational Details=== |
| + | |
| + | ====Operator Maps for the Logical Conjunction ''f''<sub>8</sub>(u, v)==== |
| + | |
| + | =====Computation of ε''f''<sub>8</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.1} ~~ \text{Computation of}~ \boldsymbol\varepsilon f_{8}~\!</math> |
| + | | |
| + | <math>\begin{array}{*{9}{l}} |
| + | \boldsymbol\varepsilon f_{8} & = & f_{8}(u, v) |
| + | \\[4pt] |
| + | & = & u \cdot v |
| + | \\[4pt] |
| + | & = & u \cdot v \cdot \texttt{(} \mathrm{d}u \texttt{)} \cdot \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & u \cdot v \cdot \texttt{(} \mathrm{d}u \texttt{)} \cdot \texttt{ } \mathrm{d}v \texttt{ } |
| + | & + & u \cdot v \cdot \texttt{ } \mathrm{d}u \texttt{ } \cdot \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & u \cdot v \cdot \texttt{ } \mathrm{d}u \texttt{ } \cdot \texttt{ } \mathrm{d}v \texttt{ } |
| + | \end{array}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{array}{*{4}{l}} |
| + | \boldsymbol\varepsilon f_{8} |
| + | & = && u \cdot v \cdot \texttt{(} \mathrm{d}u \texttt{)} \cdot \texttt{(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | && + & u \cdot v \cdot \texttt{(} \mathrm{d}u \texttt{)} \cdot \texttt{~} \mathrm{d}v \texttt{~} |
| + | \\[4pt] |
| + | && + & u \cdot v \cdot \texttt{~} \mathrm{d}u \texttt{~} \cdot \texttt{(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | && + & u \cdot v \cdot \texttt{~} \mathrm{d}u \texttt{~} \cdot \texttt{~} \mathrm{d}v \texttt{~} |
| + | \end{array}\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of E''f''<sub>8</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.2-i} ~~ \text{Computation of}~ \mathrm{E}f_{8} ~\text{(Method 1)}\!</math> |
| + | | |
| + | <math>\begin{array}{*{9}{l}} |
| + | \mathrm{E}f_{8} & = & f_{8}(u + \mathrm{d}u, v + \mathrm{d}v) |
| + | \\[4pt] |
| + | & = & \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)} \cdot \texttt{(} v \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | & = & \texttt{ } u \texttt{ } \texttt{ } v \texttt{ } \cdot f_{8}(1\!+\!\mathrm{d}u, 1\!+\!\mathrm{d}v) |
| + | & + & \texttt{ } u \texttt{ } \texttt{(} v \texttt{)} \cdot f_{8}(1\!+\!\mathrm{d}u, \mathrm{d}v) |
| + | & + & \texttt{(} u \texttt{)} \texttt{ } v \texttt{ } \cdot f_{8}(\mathrm{d}u, 1\!+\!\mathrm{d}v) |
| + | & + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot f_{8}(\mathrm{d}u, \mathrm{d}v) |
| + | \\[4pt] |
| + | & = & |
| + | \texttt{ } u \texttt{ } \texttt{ } v \texttt{ } \cdot f_{8}(\texttt{(} \mathrm{d}u \texttt{)}, \texttt{(} \mathrm{d}v \texttt{)}) |
| + | & + & |
| + | \texttt{ } u \texttt{ } \texttt{(} v \texttt{)} \cdot f_{8}(\texttt{(} \mathrm{d}u \texttt{)}, \mathrm{d}v) |
| + | & + & |
| + | \texttt{(} u \texttt{)} \texttt{ } v \texttt{ } \cdot f_{8}(\mathrm{d}u, \texttt{(} \mathrm{d}v \texttt{)}) |
| + | & + & |
| + | \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot f_{8}(\mathrm{d}u, \mathrm{d}v) |
| + | \end{array}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{array}{*{9}{l}} |
| + | \mathrm{E}f_{8} |
| + | & = & |
| + | \texttt{ } u \texttt{ } \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | &&& + & |
| + | \texttt{ } u \texttt{ } \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \texttt{ } \mathrm{d}v \texttt{ } |
| + | \\[4pt] |
| + | &&&&& + & |
| + | \texttt{(} u \texttt{)} \texttt{ } v \texttt{ } \cdot \texttt{ } \mathrm{d}u \texttt{ } \texttt{(} \mathrm{d}v \texttt{)} |
| + | \\[4pt] |
| + | &&&&&&& + & |
| + | \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot \texttt{ } \mathrm{d}u \texttt{ }~\texttt{ } \mathrm{d}v \texttt{ } |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.2-ii} ~~ \text{Computation of}~ \mathrm{E}f_{8} ~\text{(Method 2)}\!</math> |
| + | | |
| + | <math>\begin{array}{*{9}{c}} |
| + | \mathrm{E}f_{8} |
| + | & = & (u + \mathrm{d}u) \cdot (v + \mathrm{d}v) |
| + | \\[6pt] |
| + | & = & u \cdot v |
| + | & + & u \cdot \mathrm{d}v |
| + | & + & v \cdot \mathrm{d}u |
| + | & + & \mathrm{d}u \cdot \mathrm{d}v |
| + | \\[6pt] |
| + | \mathrm{E}f_{8} |
| + | & = & |
| + | \texttt{ } u \texttt{ } \texttt{ } v \texttt{ } \cdot \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & |
| + | \texttt{ } u \texttt{ } \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \texttt{ } \mathrm{d}v \texttt{ } |
| + | & + & |
| + | \texttt{(} u \texttt{)} \texttt{ } v \texttt{ } \cdot \texttt{ } \mathrm{d}u \texttt{ } \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & |
| + | \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot \texttt{ } \mathrm{d}u \texttt{ }~\texttt{ } \mathrm{d}v \texttt{ } |
| + | \end{array}\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of D''f''<sub>8</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.3-i} ~~ \text{Computation of}~ \mathrm{D}f_{8} ~\text{(Method 1)}\!</math> |
| + | | |
| + | <math>\begin{array}{*{9}{l}} |
| + | \mathrm{D}f_{8} |
| + | & = & \mathrm{E}f_{8} |
| + | & + & \boldsymbol\varepsilon f_{8} |
| + | \\[6pt] |
| + | & = & f_{8}(u + \mathrm{d}u, v + \mathrm{d}v) |
| + | & + & f_{8}(u, v) |
| + | \\[6pt] |
| + | & = & \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)} \cdot \texttt{(} v \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & u \cdot v |
| + | \end{array}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{array}{*{9}{l}} |
| + | \mathrm{D}f_{8} |
| + | & = & |
| + | u \cdot v \cdot \qquad 0 |
| + | \\[6pt] |
| + | & + & |
| + | u \cdot v \cdot \texttt{(} \mathrm{d}u \texttt{)} \cdot \mathrm{d}v |
| + | & + & |
| + | u \cdot \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \cdot \mathrm{d}v |
| + | \\[6pt] |
| + | & + & |
| + | u \cdot v \cdot \texttt{~} \mathrm{d}u \cdot \texttt{(} \mathrm{d}v \texttt{)} |
| + | &&& + & |
| + | \texttt{(} u \texttt{)} \cdot v \cdot \mathrm{d}u \cdot \texttt{(} \mathrm{d}v \texttt{)} |
| + | \\[6pt] |
| + | & + & |
| + | u \cdot v \cdot \texttt{~} \mathrm{d}u \;\cdot\; \mathrm{d}v \texttt{~} |
| + | &&&&& + & |
| + | \texttt{(} u \texttt{)} \cdot \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v \texttt{~} |
| + | \end{array}</math> |
| + | |- |
| + | | |
| + | <math>\begin{array}{*{9}{l}} |
| + | \mathrm{D}f_{8} |
| + | & = & |
| + | u \cdot v \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | & + & |
| + | u \cdot \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \cdot \mathrm{d}v |
| + | & + & |
| + | \texttt{(} u \texttt{)} \cdot v \cdot \mathrm{d}u \cdot \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & |
| + | \texttt{(} u \texttt{)} \cdot \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v \texttt{~} |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.3-ii} ~~ \text{Computation of}~ \mathrm{D}f_{8} ~\text{(Method 2)}\!</math> |
| + | | |
| + | <math>\begin{array}{*{9}{l}} |
| + | \mathrm{D}f_{8} |
| + | & = & \boldsymbol\varepsilon f_{8} |
| + | & + & \mathrm{E}f_{8} |
| + | \\[6pt] |
| + | & = & f_{8}(u, v) |
| + | & + & f_{8}(u + \mathrm{d}u, v + \mathrm{d}v) |
| + | \\[6pt] |
| + | & = & u \cdot v |
| + | & + & \texttt{(} u \texttt{,} \mathrm{d}u \texttt{)} \cdot \texttt{(} v \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\[6pt] |
| + | & = & 0 |
| + | & + & u \cdot \mathrm{d}v |
| + | & + & v \cdot \mathrm{d}u |
| + | & + & \mathrm{d}u \cdot \mathrm{d}v |
| + | \\[6pt] |
| + | \mathrm{D}f_{8} |
| + | & = & 0 |
| + | & + & u \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{((} u \texttt{,} v \texttt{))} \cdot \mathrm{d}u \cdot \mathrm{d}v |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.3-iii} ~~ \text{Computation of}~ \mathrm{D}f_{8} ~\text{(Method 3)}\!</math> |
| + | | |
| + | <math>\begin{array}{*{5}{l}} |
| + | \mathrm{D}f_{8} & = & \boldsymbol\varepsilon f_{8} & + & \mathrm{E}f_{8} |
| + | \end{array}</math> |
| + | |- |
| + | | |
| + | <math>\begin{array}{*{9}{l}} |
| + | \boldsymbol\varepsilon f_{8} |
| + | & = & u \,\cdot\, v \,\cdot\, \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & u \,\cdot\, v \,\cdot\, \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & ~ u \,\cdot\, v \,\cdot\, \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & ~ u \;\cdot\; v \;\cdot\; \mathrm{d}u ~ \mathrm{d}v |
| + | \\[6pt] |
| + | \mathrm{E}f_{8} |
| + | & = & u \,\cdot\, v \,\cdot\, \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & u ~ \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} ~ v \,\cdot\, \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot\, \mathrm{d}u ~ \mathrm{d}v |
| + | \end{array}</math> |
| + | |- |
| + | | |
| + | <math>\begin{array}{*{9}{l}} |
| + | \mathrm{D}f_{8} |
| + | & = & ~~ 0 ~~ \,\cdot\, ~ \texttt{(} \mathrm{d}u \texttt{)} \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & ~~ u ~ \,\cdot\, ~~ \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & ~~~ v ~~ \,\cdot\, \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{((} u \texttt{,} v \texttt{))} \cdot \mathrm{d}u ~ \mathrm{d}v |
| + | \end{array}\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of d''f''<sub>8</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.4} ~~ \text{Computation of}~ \mathrm{d}f_{8}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \mathrm{D}f_{8} |
| + | & = & |
| + | u\!\cdot\!v \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | & + & |
| + | u \, \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \, \mathrm{d}v |
| + | & + & |
| + | \texttt{(} u \texttt{)} \, v \cdot \mathrm{d}u \, \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & |
| + | \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \!\cdot\! \mathrm{d}v \texttt{~} |
| + | \\[6pt] |
| + | \Downarrow |
| + | \\[6pt] |
| + | \mathrm{d}f_{8} |
| + | & = & |
| + | u\!\cdot\!v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & |
| + | u \, \texttt{(} v \texttt{)} \cdot \mathrm{d}v |
| + | & + & |
| + | \texttt{(} u \texttt{)} \, v \cdot \mathrm{d}u |
| + | & + & |
| + | \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation of r''f''<sub>8</sub>===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.5} ~~ \text{Computation of}~ \mathrm{r}f_{8}\!</math> |
| + | | |
| + | <math>\begin{array}{*{5}{l}} |
| + | \mathrm{r}f_{8} & = & \mathrm{D}f_{8} & + & \mathrm{d}f_{8} |
| + | \end{array}</math> |
| + | |- |
| + | | |
| + | <math>\begin{array}{*{9}{l}} |
| + | \mathrm{D}f_{8} |
| + | & = & u \!\cdot\! v \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v |
| + | \\[6pt] |
| + | \mathrm{d}f_{8} |
| + | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u |
| + | & + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot 0 |
| + | \end{array}</math> |
| + | |- |
| + | | |
| + | <math>\begin{array}{*{9}{l}} |
| + | \mathrm{r}f_{8} |
| + | & = & u \!\cdot\! v \cdot ~ \mathrm{d}u \cdot \mathrm{d}v ~~~~~~ |
| + | & + & u \texttt{(} v \texttt{)} \cdot \, \mathrm{d}u \cdot \mathrm{d}v \, |
| + | & + & \texttt{(} u \texttt{)} v \cdot \, \mathrm{d}u \cdot \mathrm{d}v \, |
| + | & + & \texttt{(} u \texttt{)} \texttt{(} v \texttt{)} \cdot \, \mathrm{d}u \cdot \mathrm{d}v |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | =====Computation Summary for Conjunction===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table F8.6} ~~ \text{Computation Summary for}~ f_{8}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \boldsymbol\varepsilon f_{8} |
| + | & = & u \!\cdot\! v \cdot 1 |
| + | & + & u \texttt{(} v \texttt{)} \cdot 0 |
| + | & + & \texttt{(} u \texttt{)} v \cdot 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
| + | \\[6pt] |
| + | \mathrm{E}f_{8} |
| + | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v |
| + | \\[6pt] |
| + | \mathrm{D}f_{8} |
| + | & = & u \!\cdot\! v \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v |
| + | \\[6pt] |
| + | \mathrm{d}f_{8} |
| + | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
| + | \\[6pt] |
| + | \mathrm{r}f_{8} |
| + | & = & u \!\cdot\! v \cdot \mathrm{d}u \cdot \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \cdot \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v |
| + | \end{array}</math> |
| |} | | |} |
| | | |
| <br> | | <br> |
− |
| |
− | ===Appendix 2. Computational Details===
| |
| | | |
| ====Operator Maps for the Logical Disjunction ''f''(u, v)==== | | ====Operator Maps for the Logical Disjunction ''f''(u, v)==== |
| | | |
− | =====Computation of “εf”===== | + | =====Computation of ε''f''===== |
− | | |
− | =====Computation of “Ef”=====
| |
| | | |
− | =====Computation of “Df” (1)===== | + | =====Computation of E''f''===== |
| | | |
− | =====Computation of “Df” (2)===== | + | =====Computation of D''f''===== |
| | | |
− | =====Computation of “df”===== | + | =====Computation of d''f''===== |
| | | |
− | =====Computation of “rf”===== | + | =====Computation of r''f''===== |
| | | |
| =====Computation Summary for Disjunction===== | | =====Computation Summary for Disjunction===== |
Line 10,449: |
Line 10,730: |
| ====Operator Maps for the Logical Equality ''g''(u, v)==== | | ====Operator Maps for the Logical Equality ''g''(u, v)==== |
| | | |
− | ======Computation of “εg”======
| + | =====Computation of ε''g''===== |
− | | |
− | =====Computation of “Eg”=====
| |
| | | |
− | =====Computation of “Dg” (1)===== | + | =====Computation of E''g''===== |
| | | |
− | =====Computation of “Dg” (2)===== | + | =====Computation of D''g''===== |
| | | |
− | =====Computation of “dg”===== | + | =====Computation of d''g''===== |
| | | |
− | =====Computation of “rg”===== | + | =====Computation of r''g''===== |
| | | |
| =====Computation Summary for Equality===== | | =====Computation Summary for Equality===== |
Line 10,503: |
Line 10,782: |
| <br> | | <br> |
| | | |
− | ===Appendix 3. Source Materials=== | + | ===Appendix 4. Source Materials=== |
| | | |
− | ===Appendix 4. Various Definitions of the Tangent Vector=== | + | ===Appendix 5. Various Definitions of the Tangent Vector=== |
| | | |
| ==References== | | ==References== |