Line 9,275:
Line 9,275:
| style="border-right:none" | <math>\texttt{((~))}\!</math>
| style="border-right:none" | <math>\texttt{((~))}\!</math>
| style="border-left:4px double black" | <math>0\!</math>
| style="border-left:4px double black" | <math>0\!</math>
+
| <math>0\!</math>
+
|}
+
+
<br>
+
+
====Table A9. Differential = Pointwise Linear Approximation to the Difference====
+
+
====Table A10. Taylor Series Expansion====
+
+
<br>
+
+
{| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:center; width:90%"
+
|+ style="height:30px" |
+
<math>\text{Table A10.} ~~ \text{Taylor Series Expansion}~ {\mathrm{D}f = \mathrm{d}f + \mathrm{d}^2\!f}\!</math>
+
|- style="background:ghostwhite; height:40px"
+
| style="border-right:none" | <math>f\!</math>
+
| style="border-left:4px double black" |
+
<math>\begin{matrix}
+
\mathrm{D}f
+
\\
+
= & \mathrm{d}f & + & \mathrm{d}^2\!f
+
\\
+
= & \partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y & + & \partial_{xy} f \cdot \mathrm{d}x\;\mathrm{d}y
+
\end{matrix}\!</math>
+
| <math>\mathrm{d}f|_{x \, y}</math>
+
| <math>\mathrm{d}f|_{x \, \texttt{(} y \texttt{)}}</math>
+
| <math>\mathrm{d}f|_{\texttt{(} x \texttt{)} \, y}</math>
+
| <math>\mathrm{d}f|_{\texttt{(} x \texttt{)(} y \texttt{)}}</math>
+
|-
+
| style="border-right:none" | <math>f_0\!</math>
+
| style="border-left:4px double black" | <math>0\!</math>
+
| <math>0\!</math>
+
| <math>0\!</math>
+
| <math>0\!</math>
+
| <math>0\!</math>
+
|-
+
| style="border-right:none" | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}\!</math>
+
| style="border-left:4px double black" |
+
<math>\begin{matrix}
+
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + &
+
\texttt{(} x \texttt{)} \cdot \mathrm{d}y & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\\
+
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{(} x \texttt{)} \cdot \mathrm{d}y & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\\
+
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + &
+
\texttt{~} x \texttt{~} \cdot \mathrm{d}y & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\\
+
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{~} x \texttt{~} \cdot \mathrm{d}y & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0
+
\end{matrix}</math>
+
|-
+
| style="border-right:none" | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math>
+
| style="border-left:4px double black" |
+
<math>\begin{matrix}
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + &
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\\
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + &
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}x\\\mathrm{d}x
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}x\\\mathrm{d}x
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}x\\\mathrm{d}x
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}x\\\mathrm{d}x
+
\end{matrix}</math>
+
|-
+
| style="border-right:none" | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math>
+
| style="border-left:4px double black" |
+
<math>\begin{matrix}
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + &
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\\
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + &
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
+
\end{matrix}</math>
+
|-
+
| style="border-right:none" | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}\!</math>
+
| style="border-left:4px double black" |
+
<math>\begin{matrix}
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + &
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\\
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + &
+
\texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}y\\\mathrm{d}y
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}y\\\mathrm{d}y
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}y\\\mathrm{d}y
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}y\\\mathrm{d}y
+
\end{matrix}\!</math>
+
|-
+
| style="border-right:none" | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math>
+
| style="border-left:4px double black" |
+
<math>\begin{matrix}
+
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{~} x \texttt{~} \cdot \mathrm{d}y & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\\
+
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + &
+
\texttt{~} x \texttt{~} \cdot \mathrm{d}y & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\\
+
\texttt{~} y \texttt{~} \cdot \mathrm{d}x & + &
+
\texttt{(} x \texttt{)} \cdot \mathrm{d}y & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\\
+
\texttt{(} y \texttt{)} \cdot \mathrm{d}x & + &
+
\texttt{(} x \texttt{)} \cdot \mathrm{d}y & + &
+
\texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y
+
\end{matrix}</math>
+
|
+
<math>\begin{matrix}
+
0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y
+
\end{matrix}</math>
+
|-
+
| style="border-right:none" | <math>f_{15}\!</math>
+
| style="border-left:4px double black" | <math>0\!</math>
+
| <math>0\!</math>
+
| <math>0\!</math>
+
| <math>0\!</math>
+
| <math>0\!</math>
+
|}
+
+
<br>
+
+
====Table A11. Partial Differentials and Relative Differentials====
+
+
<br>
+
+
{| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%"
+
|+ style="height:30px" | <math>\text{Table A11.} ~~ \text{Partial Differentials and Relative Differentials}\!</math>
+
|- style="background:ghostwhite; height:50px"
+
|
+
| <math>f\!</math>
+
| <math>\frac{\partial f}{\partial x}</math>
+
| <math>\frac{\partial f}{\partial y}</math>
+
|
+
<p><math>\operatorname{d}f =</math></p>
+
<p><math>\partial_x f \cdot \operatorname{d}x\ +\ \partial_y f \cdot \operatorname{d}y</math></p>
+
| <math>\left. \frac{\partial x}{\partial y} \right| f</math>
+
| <math>\left. \frac{\partial y}{\partial x} \right| f</math>
+
|- style="height:36px"
+
| <math>f_0\!</math>
+
| <math>(~)\!</math>
+
| <math>0\!</math>
+
| <math>0\!</math>
+
| <math>0\!</math>
+
| <math>0\!</math>
+
| <math>0\!</math>
+
|-
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
f_{1} \\
+
f_{2} \\
+
f_{4} \\
+
f_{8} \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
(x) & (y) \\
+
(x) & y \\
+
x & (y) \\
+
x & y \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
(y) \\
+
y \\
+
(y) \\
+
y \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
(x) \\
+
(x) \\
+
x \\
+
x \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
(y) & \operatorname{d}x & + & (x) & \operatorname{d}y \\
+
y & \operatorname{d}x & + & (x) & \operatorname{d}y \\
+
(y) & \operatorname{d}x & + & x & \operatorname{d}y \\
+
y & \operatorname{d}x & + & x & \operatorname{d}y \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
~ \\
+
~ \\
+
~ \\
+
~ \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
~ \\
+
~ \\
+
~ \\
+
~ \\
+
\end{smallmatrix}</math>
+
|}
+
|-
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
f_{3} \\
+
f_{12} \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
(x) \\
+
x \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
1 \\
+
1 \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
0 \\
+
0 \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
\operatorname{d}x \\
+
\operatorname{d}x \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
~ \\
+
~ \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
~ \\
+
~ \\
+
\end{smallmatrix}</math>
+
|}
+
|-
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
f_{6} \\
+
f_{9} \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
(x, & y) \\
+
((x, & y)) \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
1 \\
+
1 \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
1 \\
+
1 \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
\operatorname{d}x & + & \operatorname{d}y \\
+
\operatorname{d}x & + & \operatorname{d}y \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
~ \\
+
~ \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
~ \\
+
~ \\
+
\end{smallmatrix}</math>
+
|}
+
|-
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
f_{5} \\
+
f_{10} \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
(y) \\
+
y \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
0 \\
+
0 \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
1 \\
+
1 \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
\operatorname{d}y \\
+
\operatorname{d}y \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
~ \\
+
~ \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
~ \\
+
~ \\
+
\end{smallmatrix}</math>
+
|}
+
|-
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
f_{7} \\
+
f_{11} \\
+
f_{13} \\
+
f_{14} \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
(x & y) \\
+
(x & (y)) \\
+
((x) & y) \\
+
((x) & (y)) \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
y \\
+
(y) \\
+
y \\
+
(y) \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
x \\
+
x \\
+
(x) \\
+
(x) \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
y & \operatorname{d}x & + & x & \operatorname{d}y \\
+
(y) & \operatorname{d}x & + & x & \operatorname{d}y \\
+
y & \operatorname{d}x & + & (x) & \operatorname{d}y \\
+
(y) & \operatorname{d}x & + & (x) & \operatorname{d}y \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
~ \\
+
~ \\
+
~ \\
+
~ \\
+
\end{smallmatrix}</math>
+
|}
+
|
+
{| align="center"
+
|
+
<math>\begin{smallmatrix}
+
~ \\
+
~ \\
+
~ \\
+
~ \\
+
\end{smallmatrix}</math>
+
|}
+
|- style="height:36px"
+
| <math>f_{15}\!</math>
+
| <math>((~))\!</math>
+
| <math>0\!</math>
+
| <math>0\!</math>
+
| <math>0\!</math>
+
| <math>0\!</math>
| <math>0\!</math>
| <math>0\!</math>
|}
|}