Line 10,637: |
Line 10,637: |
| | | |
| {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" | | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
− | |+ style="height:30px" | <math>\text{Table F8.6} ~~ \text{Computation Summary for}~ f_{8}\!</math> | + | |+ style="height:30px" | <math>\text{Table F8.6} ~~ \text{Computation Summary for}~ f_{8}(u, v) = uv\!</math> |
| | | | | |
| <math>\begin{array}{c*{8}{l}} | | <math>\begin{array}{c*{8}{l}} |
Line 10,674: |
Line 10,674: |
| <br> | | <br> |
| | | |
− | ====Operator Maps for the Logical Disjunction ''f''(u, v)==== | + | ====Operator Maps for the Logical Equality ''f''<sub>9</sub>(u, v)==== |
| | | |
− | =====Computation of ε''f''===== | + | =====Computation of ε''f''<sub>9</sub>===== |
| | | |
− | =====Computation of E''f''===== | + | =====Computation of E''f''<sub>9</sub>===== |
| | | |
− | =====Computation of D''f''===== | + | =====Computation of D''f''<sub>9</sub>===== |
| | | |
− | =====Computation of d''f''===== | + | =====Computation of d''f''<sub>9</sub>===== |
| | | |
− | =====Computation of r''f''===== | + | =====Computation of r''f''<sub>9</sub>===== |
| | | |
− | =====Computation Summary for Disjunction===== | + | =====Computation Summary for Equality===== |
| | | |
| <br> | | <br> |
| | | |
| {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" | | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
− | |+ style="height:30px" | <math>\text{Table 66-i.} ~~ \text{Computation Summary for}~ f(u, v) = \texttt{((} u \texttt{)(} v \texttt{))}\!</math> | + | |+ style="height:30px" | <math>\text{Table F9.6} ~~ \text{Computation Summary for}~ f_{9}(u, v) = \texttt{((} u \texttt{,} v \texttt{))}\!</math> |
| | | | | |
| <math>\begin{array}{c*{8}{l}} | | <math>\begin{array}{c*{8}{l}} |
− | \boldsymbol\varepsilon f | + | \boldsymbol\varepsilon f_{9} |
| & = & u \!\cdot\! v \cdot 1 | | & = & u \!\cdot\! v \cdot 1 |
− | & + & u \texttt{(} v \texttt{)} \cdot 1 | + | & + & u \texttt{(} v \texttt{)} \cdot 0 |
− | & + & \texttt{(} u \texttt{)} v \cdot 1 | + | & + & \texttt{(} u \texttt{)} v \cdot 0 |
− | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 | + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 1 |
| \\[6pt] | | \\[6pt] |
− | \mathrm{E}f | + | \mathrm{E}f_{9} |
− | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \cdot \mathrm{d}v \texttt{)} | + | & = & u \!\cdot\! v \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} |
− | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} | + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | & + & \texttt{(} u \texttt{)} v \cdot \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} | + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} |
| \\[6pt] | | \\[6pt] |
− | \mathrm{D}f | + | \mathrm{D}f_{9} |
− | & = & u \!\cdot\! v \cdot \mathrm{d}u \cdot \mathrm{d}v | + | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} | + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v | + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} | + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| \\[6pt] | | \\[6pt] |
− | \mathrm{d}f | + | \mathrm{d}f_{9} |
− | & = & u \!\cdot\! v \cdot 0 | + | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u | + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}v | + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| \\[6pt] | | \\[6pt] |
− | \mathrm{r}f | + | \mathrm{r}f_{9} |
− | & = & u \!\cdot\! v \cdot \mathrm{d}u \cdot \mathrm{d}v | + | & = & u \!\cdot\! v \cdot 0 |
− | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v | + | & + & u \texttt{(} v \texttt{)} \cdot 0 |
− | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \cdot \mathrm{d}v | + | & + & \texttt{(} u \texttt{)} v \cdot 0 |
− | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v | + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
| \end{array}</math> | | \end{array}</math> |
| |} | | |} |
Line 10,728: |
Line 10,728: |
| <br> | | <br> |
| | | |
− | ====Operator Maps for the Logical Equality ''g''(u, v)==== | + | ====Operator Maps for the Logical Disjunction ''f''<sub>14</sub>(u, v)==== |
| | | |
− | =====Computation of ε''g''===== | + | =====Computation of ε''f''<sub>14</sub>===== |
| | | |
− | =====Computation of E''g''===== | + | =====Computation of E''f''<sub>14</sub>===== |
| | | |
− | =====Computation of D''g''===== | + | =====Computation of D''f''<sub>14</sub>===== |
| | | |
− | =====Computation of d''g''===== | + | =====Computation of d''f''<sub>14</sub>===== |
| | | |
− | =====Computation of r''g''===== | + | =====Computation of r''f''<sub>14</sub>===== |
| | | |
− | =====Computation Summary for Equality===== | + | =====Computation Summary for Disjunction===== |
| | | |
| <br> | | <br> |
| | | |
| {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" | | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
− | |+ style="height:30px" | <math>\text{Table 66-ii.} ~~ \text{Computation Summary for}~ g(u, v) = \texttt{((} u \texttt{,} v \texttt{))}\!</math> | + | |+ style="height:30px" | <math>\text{Table F14.6} ~~ \text{Computation Summary for}~ f_{14}(u, v) = \texttt{((} u \texttt{)(} v \texttt{))}\!</math> |
| | | | | |
| <math>\begin{array}{c*{8}{l}} | | <math>\begin{array}{c*{8}{l}} |
− | \boldsymbol\varepsilon g | + | \boldsymbol\varepsilon f_{14} |
| & = & u \!\cdot\! v \cdot 1 | | & = & u \!\cdot\! v \cdot 1 |
− | & + & u \texttt{(} v \texttt{)} \cdot 0 | + | & + & u \texttt{(} v \texttt{)} \cdot 1 |
− | & + & \texttt{(} u \texttt{)} v \cdot 0 | + | & + & \texttt{(} u \texttt{)} v \cdot 1 |
− | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 1 | + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
| \\[6pt] | | \\[6pt] |
− | \mathrm{E}g | + | \mathrm{E}f_{14} |
− | & = & u \!\cdot\! v \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} | + | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \cdot \mathrm{d}v \texttt{)} |
− | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} |
− | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} |
− | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} | + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| \\[6pt] | | \\[6pt] |
− | \mathrm{D}g | + | \mathrm{D}f_{14} |
− | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | + | & = & u \!\cdot\! v \cdot \mathrm{d}u \cdot \mathrm{d}v |
− | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
− | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
− | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| \\[6pt] | | \\[6pt] |
− | \mathrm{d}g | + | \mathrm{d}f_{14} |
− | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | + | & = & u \!\cdot\! v \cdot 0 |
− | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u |
− | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}v |
| & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} | | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| \\[6pt] | | \\[6pt] |
− | \mathrm{r}g | + | \mathrm{r}f_{14} |
− | & = & u \!\cdot\! v \cdot 0 | + | & = & u \!\cdot\! v \cdot \mathrm{d}u \cdot \mathrm{d}v |
− | & + & u \texttt{(} v \texttt{)} \cdot 0 | + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v |
− | & + & \texttt{(} u \texttt{)} v \cdot 0 | + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \cdot \mathrm{d}v |
− | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 | + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v |
| \end{array}</math> | | \end{array}</math> |
| |} | | |} |