Line 10,637:
Line 10,637:
{| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%"
{| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%"
−
|+ style="height:30px" | <math>\text{Table F8.6} ~~ \text{Computation Summary for}~ f_{8}\!</math>
+
|+ style="height:30px" | <math>\text{Table F8.6} ~~ \text{Computation Summary for}~ f_{8}(u, v) = uv\!</math>
|
|
<math>\begin{array}{c*{8}{l}}
<math>\begin{array}{c*{8}{l}}
Line 10,674:
Line 10,674:
<br>
<br>
−
====Operator Maps for the Logical Disjunction ''f''(u, v)====
+
====Operator Maps for the Logical Equality ''f''<sub>9</sub>(u, v)====
−
=====Computation of ε''f''=====
+
=====Computation of ε''f''<sub>9</sub>=====
−
=====Computation of E''f''=====
+
=====Computation of E''f''<sub>9</sub>=====
−
=====Computation of D''f''=====
+
=====Computation of D''f''<sub>9</sub>=====
−
=====Computation of d''f''=====
+
=====Computation of d''f''<sub>9</sub>=====
−
=====Computation of r''f''=====
+
=====Computation of r''f''<sub>9</sub>=====
−
=====Computation Summary for Disjunction=====
+
=====Computation Summary for Equality=====
<br>
<br>
{| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%"
{| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%"
−
|+ style="height:30px" | <math>\text{Table 66-i.} ~~ \text{Computation Summary for}~ f(u, v) = \texttt{((} u \texttt{)(} v \texttt{))}\!</math>
+
|+ style="height:30px" | <math>\text{Table F9.6} ~~ \text{Computation Summary for}~ f_{9}(u, v) = \texttt{((} u \texttt{,} v \texttt{))}\!</math>
|
|
<math>\begin{array}{c*{8}{l}}
<math>\begin{array}{c*{8}{l}}
−
\boldsymbol\varepsilon f
+
\boldsymbol\varepsilon f_{9}
& = & u \!\cdot\! v \cdot 1
& = & u \!\cdot\! v \cdot 1
−
& + & u \texttt{(} v \texttt{)} \cdot 1
+
& + & u \texttt{(} v \texttt{)} \cdot 0
−
& + & \texttt{(} u \texttt{)} v \cdot 1
+
& + & \texttt{(} u \texttt{)} v \cdot 0
−
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0
+
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 1
\\[6pt]
\\[6pt]
−
\mathrm{E}f
+
\mathrm{E}f_{9}
−
& = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \cdot \mathrm{d}v \texttt{)}
+
& = & u \!\cdot\! v \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))}
−
& + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))}
+
& + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
−
& + & \texttt{(} u \texttt{)} v \cdot \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)}
+
& + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
−
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))}
+
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))}
\\[6pt]
\\[6pt]
−
\mathrm{D}f
+
\mathrm{D}f_{9}
−
& = & u \!\cdot\! v \cdot \mathrm{d}u \cdot \mathrm{d}v
+
& = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
−
& + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)}
+
& + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
−
& + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v
+
& + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
−
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))}
+
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
\\[6pt]
\\[6pt]
−
\mathrm{d}f
+
\mathrm{d}f_{9}
−
& = & u \!\cdot\! v \cdot 0
+
& = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
−
& + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u
+
& + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
−
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}v
+
& + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
\\[6pt]
\\[6pt]
−
\mathrm{r}f
+
\mathrm{r}f_{9}
−
& = & u \!\cdot\! v \cdot \mathrm{d}u \cdot \mathrm{d}v
+
& = & u \!\cdot\! v \cdot 0
−
& + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v
+
& + & u \texttt{(} v \texttt{)} \cdot 0
−
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \cdot \mathrm{d}v
+
& + & \texttt{(} u \texttt{)} v \cdot 0
−
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v
+
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0
\end{array}</math>
\end{array}</math>
|}
|}
Line 10,728:
Line 10,728:
<br>
<br>
−
====Operator Maps for the Logical Equality ''g''(u, v)====
+
====Operator Maps for the Logical Disjunction ''f''<sub>14</sub>(u, v)====
−
=====Computation of ε''g''=====
+
=====Computation of ε''f''<sub>14</sub>=====
−
=====Computation of E''g''=====
+
=====Computation of E''f''<sub>14</sub>=====
−
=====Computation of D''g''=====
+
=====Computation of D''f''<sub>14</sub>=====
−
=====Computation of d''g''=====
+
=====Computation of d''f''<sub>14</sub>=====
−
=====Computation of r''g''=====
+
=====Computation of r''f''<sub>14</sub>=====
−
=====Computation Summary for Equality=====
+
=====Computation Summary for Disjunction=====
<br>
<br>
{| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%"
{| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%"
−
|+ style="height:30px" | <math>\text{Table 66-ii.} ~~ \text{Computation Summary for}~ g(u, v) = \texttt{((} u \texttt{,} v \texttt{))}\!</math>
+
|+ style="height:30px" | <math>\text{Table F14.6} ~~ \text{Computation Summary for}~ f_{14}(u, v) = \texttt{((} u \texttt{)(} v \texttt{))}\!</math>
|
|
<math>\begin{array}{c*{8}{l}}
<math>\begin{array}{c*{8}{l}}
−
\boldsymbol\varepsilon g
+
\boldsymbol\varepsilon f_{14}
& = & u \!\cdot\! v \cdot 1
& = & u \!\cdot\! v \cdot 1
−
& + & u \texttt{(} v \texttt{)} \cdot 0
+
& + & u \texttt{(} v \texttt{)} \cdot 1
−
& + & \texttt{(} u \texttt{)} v \cdot 0
+
& + & \texttt{(} u \texttt{)} v \cdot 1
−
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 1
+
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0
\\[6pt]
\\[6pt]
−
\mathrm{E}g
+
\mathrm{E}f_{14}
−
& = & u \!\cdot\! v \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))}
+
& = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \cdot \mathrm{d}v \texttt{)}
−
& + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
+
& + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))}
−
& + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
+
& + & \texttt{(} u \texttt{)} v \cdot \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)}
−
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))}
+
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))}
\\[6pt]
\\[6pt]
−
\mathrm{D}g
+
\mathrm{D}f_{14}
−
& = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
+
& = & u \!\cdot\! v \cdot \mathrm{d}u \cdot \mathrm{d}v
−
& + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
+
& + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)}
−
& + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
+
& + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v
−
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
+
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))}
\\[6pt]
\\[6pt]
−
\mathrm{d}g
+
\mathrm{d}f_{14}
−
& = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
+
& = & u \!\cdot\! v \cdot 0
−
& + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
+
& + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u
−
& + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
+
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}v
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
\\[6pt]
\\[6pt]
−
\mathrm{r}g
+
\mathrm{r}f_{14}
−
& = & u \!\cdot\! v \cdot 0
+
& = & u \!\cdot\! v \cdot \mathrm{d}u \cdot \mathrm{d}v
−
& + & u \texttt{(} v \texttt{)} \cdot 0
+
& + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v
−
& + & \texttt{(} u \texttt{)} v \cdot 0
+
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \cdot \mathrm{d}v
−
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0
+
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v
\end{array}</math>
\end{array}</math>
|}
|}