Difference between revisions of "Logical matrix"

MyWikiBiz, Author Your Legacy — Thursday November 21, 2024
Jump to navigationJump to search
(update)
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<font size="3">&#9758;</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]].
 
<font size="3">&#9758;</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]].
  
A '''logical matrix''', in the finite dimensional case, is a ''k''-dimensional [[array]] with entries from the [[boolean domain]] '''B'''&nbsp;=&nbsp;{0,&nbsp;1}.  Such a [[matrix]] affords a [[matrix representation]] of a ''k''-adic [[relation (mathematics)|relation]].
+
A '''logical matrix''', in the finite dimensional case, is a <math>k\!</math>-dimensional array with entries from the [[boolean domain]] <math>\mathbb{B} = \{ 0,1 \}.</math> Such a matrix affords a matrix representation of a <math>k\!</math>-adic [[relation (mathematics)|relation]].
  
 
==Syllabus==
 
==Syllabus==
Line 7: Line 7:
 
===Focal nodes===
 
===Focal nodes===
  
{{col-begin}}
 
{{col-break}}
 
 
* [[Inquiry Live]]
 
* [[Inquiry Live]]
{{col-break}}
 
 
* [[Logic Live]]
 
* [[Logic Live]]
{{col-end}}
 
  
 
===Peer nodes===
 
===Peer nodes===
  
{{col-begin}}
+
* [http://intersci.ss.uci.edu/wiki/index.php/Logical_matrix Logical Matrix @ InterSciWiki]
{{col-break}}
 
 
* [http://mywikibiz.com/Logical_matrix Logical Matrix @ MyWikiBiz]
 
* [http://mywikibiz.com/Logical_matrix Logical Matrix @ MyWikiBiz]
* [http://mathweb.org/wiki/Logical_matrix Logical Matrix @ MathWeb Wiki]
+
* [http://ref.subwiki.org/wiki/Logical_matrix Logical Matrix @ Subject Wikis]
* [http://netknowledge.org/wiki/Logical_matrix Logical Matrix @ NetKnowledge]
+
* [http://en.wikiversity.org/wiki/Logical_matrix Logical Matrix @ Wikiversity]
{{col-break}}
+
* [http://beta.wikiversity.org/wiki/Logical_matrix Logical Matrix @ Wikiversity Beta]
* [http://wiki.oercommons.org/mediawiki/index.php/Logical_matrix Logical Matrix @ OER Commons]
 
* [http://p2pfoundation.net/Logical_Matrix Logical Matrix @ P2P Foundation]
 
* [http://semanticweb.org/wiki/Logical_matrix Logical Matrix @ SemanticWeb]
 
{{col-end}}
 
  
 
===Logical operators===
 
===Logical operators===
Line 104: Line 95:
 
===Related articles===
 
===Related articles===
  
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Semiotic_Information Jon Awbrey, &ldquo;Semiotic Information&rdquo;]
+
{{col-begin}}
 
+
{{col-break}}
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Introduction_to_Inquiry_Driven_Systems Jon Awbrey, &ldquo;Introduction To Inquiry Driven Systems&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Cactus_Language Cactus Language]
 
+
* [http://intersci.ss.uci.edu/wiki/index.php/Futures_Of_Logical_Graphs Futures Of Logical Graphs]
* [http://mywikibiz.com/Directory:Jon_Awbrey/Essays/Prospects_For_Inquiry_Driven_Systems Jon Awbrey, &ldquo;Prospects For Inquiry Driven Systems&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Propositional_Equation_Reasoning_Systems Propositional Equation Reasoning Systems]
 
+
{{col-break}}
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Inquiry_Driven_Systems Jon Awbrey, &ldquo;Inquiry Driven Systems : Inquiry Into Inquiry&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Differential_Logic_:_Introduction Differential Logic : Introduction]
 
+
* [http://intersci.ss.uci.edu/wiki/index.php/Differential_Propositional_Calculus Differential Propositional Calculus]
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Propositional_Equation_Reasoning_Systems Jon Awbrey, &ldquo;Propositional Equation Reasoning Systems&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Differential_Logic_and_Dynamic_Systems_2.0 Differential Logic and Dynamic Systems]
 
+
{{col-break}}
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Differential_Logic_:_Introduction Jon Awbrey, &ldquo;Differential Logic : Introduction&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Introduction_to_Inquiry_Driven_Systems Introduction to Inquiry Driven Systems]
 
+
* [http://intersci.ss.uci.edu/wiki/index.php/Prospects_for_Inquiry_Driven_Systems Prospects for Inquiry Driven Systems]
* [http://planetmath.org/encyclopedia/DifferentialPropositionalCalculus.html Jon Awbrey, &ldquo;Differential Propositional Calculus&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Inquiry_Driven_Systems Inquiry Driven Systems : Inquiry Into Inquiry]
 
+
{{col-end}}
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Differential_Logic_and_Dynamic_Systems_2.0 Jon Awbrey, &ldquo;Differential Logic and Dynamic Systems&rdquo;]
 
  
 
==Document history==
 
==Document history==
Line 124: Line 114:
 
Portions of the above article were adapted from the following sources under the [[GNU Free Documentation License]], under other applicable licenses, or by permission of the copyright holders.
 
Portions of the above article were adapted from the following sources under the [[GNU Free Documentation License]], under other applicable licenses, or by permission of the copyright holders.
  
{{col-begin}}
+
* [http://intersci.ss.uci.edu/wiki/index.php/Logical_matrix Logical Matrix], [http://intersci.ss.uci.edu/ InterSciWiki]
{{col-break}}
 
 
* [http://mywikibiz.com/Logical_matrix Logical Matrix], [http://mywikibiz.com/ MyWikiBiz]
 
* [http://mywikibiz.com/Logical_matrix Logical Matrix], [http://mywikibiz.com/ MyWikiBiz]
* [http://planetmath.org/encyclopedia/LogicalMatrix.html Logical Matrix], [http://planetmath.org/ PlanetMath]
+
* [http://planetmath.org/LogicalMatrix Logical Matrix], [http://planetmath.org/ PlanetMath]
 +
* [http://wikinfo.org/w/index.php/Logical_matrix Logical Matrix], [http://wikinfo.org/w/ Wikinfo]
 +
* [http://en.wikiversity.org/wiki/Logical_matrix Logical Matrix], [http://en.wikiversity.org/ Wikiversity]
 
* [http://beta.wikiversity.org/wiki/Logical_matrix Logical Matrix], [http://beta.wikiversity.org/ Wikiversity Beta]
 
* [http://beta.wikiversity.org/wiki/Logical_matrix Logical Matrix], [http://beta.wikiversity.org/ Wikiversity Beta]
{{col-break}}
 
* [http://wikinfo.org/index.php/Logical_matrix Logical Matrix], [http://wikinfo.org/ Wikinfo]
 
* [http://textop.org/wiki/index.php?title=Logical_matrix Logical Matrix], [http://textop.org/wiki/ Textop Wiki]
 
 
* [http://en.wikipedia.org/w/index.php?title=Logical_matrix&oldid=43606082 Logical Matrix], [http://en.wikipedia.org/ Wikipedia]
 
* [http://en.wikipedia.org/w/index.php?title=Logical_matrix&oldid=43606082 Logical Matrix], [http://en.wikipedia.org/ Wikipedia]
{{col-end}}
 
 
<br><sharethis />
 
  
[[Category:Inquiry]]
+
[[Category:Charles Sanders Peirce]]
[[Category:Open Educational Resource]]
 
[[Category:Peer Educational Resource]]
 
 
[[Category:Combinatorics]]
 
[[Category:Combinatorics]]
 
[[Category:Computer Science]]
 
[[Category:Computer Science]]
 
[[Category:Discrete Mathematics]]
 
[[Category:Discrete Mathematics]]
 +
[[Category:Inquiry]]
 
[[Category:Logic]]
 
[[Category:Logic]]
 
[[Category:Mathematics]]
 
[[Category:Mathematics]]
 +
[[Category:Semiotics]]

Latest revision as of 16:12, 11 November 2015

This page belongs to resource collections on Logic and Inquiry.

A logical matrix, in the finite dimensional case, is a \(k\!\)-dimensional array with entries from the boolean domain \(\mathbb{B} = \{ 0,1 \}.\) Such a matrix affords a matrix representation of a \(k\!\)-adic relation.

Syllabus

Focal nodes

Peer nodes

Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Relational concepts

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Information, Inquiry

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Related articles

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Document history

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.