Difference between revisions of "Sole sufficient operator"

MyWikiBiz, Author Your Legacy — Thursday November 21, 2024
Jump to navigationJump to search
(<font size="3">☞</font> This page belongs to resource collections on Logic and Inquiry.)
Line 119: Line 119:
 
{{col-break}}
 
{{col-break}}
 
* [http://mywikibiz.com/Sole_sufficient_operator Sole Sufficient Operator], [http://mywikibiz.com/ MyWikiBiz]
 
* [http://mywikibiz.com/Sole_sufficient_operator Sole Sufficient Operator], [http://mywikibiz.com/ MyWikiBiz]
* [http://beta.wikiversity.org/wiki/Sole_sufficient_operator Sole Sufficient Operator], [http://beta.wikiversity.org/ Beta Wikiversity]
+
* [http://mathweb.org/wiki/Sole_sufficient_operator Sole Sufficient Operator], [http://mathweb.org/wiki/ MathWeb Wiki]
* [http://www.mathweb.org/wiki/Sole_sufficient_operator Sole Sufficient Operator], [http://www.mathweb.org/wiki/ MathWeb Wiki]
+
* [http://netknowledge.org/wiki/Sole_sufficient_operator Sole Sufficient Operator], [http://netknowledge.org/ NetKnowledge]
* [http://www.netknowledge.org/wiki/Sole_sufficient_operator Sole Sufficient Operator], [http://www.netknowledge.org/ NetKnowledge]
 
 
* [http://p2pfoundation.net/Sole_sufficient_operator Sole Sufficient Operator], [http://p2pfoundation.net/ P2P Foundation]
 
* [http://p2pfoundation.net/Sole_sufficient_operator Sole Sufficient Operator], [http://p2pfoundation.net/ P2P Foundation]
 
* [http://http://planetmath.org/encyclopedia/SoleSufficientOperator.html Sole Sufficient Operator], [http://planetmath.org/ PlanetMath]
 
* [http://http://planetmath.org/encyclopedia/SoleSufficientOperator.html Sole Sufficient Operator], [http://planetmath.org/ PlanetMath]
 +
* [http://planetphysics.org/encyclopedia/SoleSufficientOperator.html Sole Sufficient Operator], [http://planetphysics.org/ PlanetPhysics]
 
{{col-break}}
 
{{col-break}}
 
* [http://semanticweb.org/wiki/Sole_sufficient_operator Sole Sufficient Operator], [http://semanticweb.org/ SemanticWeb]
 
* [http://semanticweb.org/wiki/Sole_sufficient_operator Sole Sufficient Operator], [http://semanticweb.org/ SemanticWeb]
* [http://www.getwiki.net/-Sole_Sufficient_Operator Sole Sufficient Operator], [http://www.getwiki.net/ GetWiki]
+
* [http://beta.wikiversity.org/wiki/Sole_sufficient_operator Sole Sufficient Operator], [http://beta.wikiversity.org/ Wikiversity Beta]
* [http://www.wikinfo.org/index.php/Sole_sufficient_operator Sole Sufficient Operator], [http://wikinfo.org/ Wikinfo]
+
* [http://getwiki.net/-Sole_Sufficient_Operator Sole Sufficient Operator], [http://getwiki.net/ GetWiki]
* [http://www.textop.org/wiki/index.php?title=Sole_sufficient_operator Sole Sufficient Operator], [http://www.textop.org/wiki/ Textop Wiki]
+
* [http://wikinfo.org/index.php/Sole_sufficient_operator Sole Sufficient Operator], [http://wikinfo.org/ Wikinfo]
 +
* [http://textop.org/wiki/index.php?title=Sole_sufficient_operator Sole Sufficient Operator], [http://textop.org/wiki/ Textop Wiki]
 
* [http://en.wikipedia.org/w/index.php?title=Sole_sufficient_operator&oldid=156136346 Sole Sufficient Operator], [http://en.wikipedia.org/ Wikipedia]
 
* [http://en.wikipedia.org/w/index.php?title=Sole_sufficient_operator&oldid=156136346 Sole Sufficient Operator], [http://en.wikipedia.org/ Wikipedia]
 
{{col-end}}
 
{{col-end}}
Line 134: Line 135:
 
<br><sharethis />
 
<br><sharethis />
  
 +
[[Category:Inquiry]]
 +
[[Category:Open Educational Resource]]
 
[[Category:Peer Educational Resource]]
 
[[Category:Peer Educational Resource]]
 
[[Category:Logic]]
 
[[Category:Logic]]
 
[[Category:Mathematics]]
 
[[Category:Mathematics]]
 
[[Category:Semiotics]]
 
[[Category:Semiotics]]

Revision as of 12:40, 11 May 2010

This page belongs to resource collections on Logic and Inquiry.

A sole sufficient operator or a sole sufficient connective is an operator that is sufficient by itself to generate all of the operators in a specified class of operators. In logic, it is a logical operator that suffices to generate all of the boolean-valued functions, \(f : X \to \mathbb{B} \), where \(X\!\) is an arbitrary set and where \(\mathbb{B}\) is a generic 2-element set, typically \(\mathbb{B} = \{ 0, 1 \} = \{ false, true \}\), in particular, to generate all of the finitary boolean functions, \( f : \mathbb{B}^k \to \mathbb{B} \).

Syllabus

Focal nodes

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Peer nodes

Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Relational concepts

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Information, Inquiry

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Related articles

Document history

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.

Template:Col-breakTemplate:Col-breakTemplate:Col-end
<sharethis />