Changes

Line 3,206: Line 3,206:  
Back to our current subinstance, the example in support of our first example.  I will try to reconstruct it in a less confusing way.
 
Back to our current subinstance, the example in support of our first example.  I will try to reconstruct it in a less confusing way.
   −
Consider the universe of discourse <math>\mathbf{1} = A + B + C\!</math> and the 2-adic relation <math>n = {}^{\backprime\backprime}\, \text{noder of}\, \underline{~~~~}\, {}^{\prime\prime},</math> as when "<math>X\!</math> is a data record that contains a pointer to <math>Y\!</math>".  That interpretation is not important, it's just for the sake of intuition.  In general terms, the 2-adic relation <math>n\!</math> can be represented by this matrix:
+
Consider the universe of discourse <math>\mathbf{1} = \mathrm{A} + \mathrm{B} + \mathrm{C}</math> and the 2-adic relation <math>\mathit{n} = {}^{\backprime\backprime}\, \text{noder of}\, \underline{~~~~}\, {}^{\prime\prime},</math> as when "<math>X\!</math> is a data record that contains a pointer to <math>Y\!</math>".  That interpretation is not important, it's just for the sake of intuition.  In general terms, the 2-adic relation <math>n\!</math> can be represented by this matrix:
    
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
 
| align="center" |
 
| align="center" |
 
<math>\begin{bmatrix}
 
<math>\begin{bmatrix}
n_{AA} (A\!:\!A) & n_{AB} (A\!:\!B) & n_{AC} (A\!:\!C)
+
\mathit{n}_\mathrm{AA} (\mathrm{A}\!:\!\mathrm{A}) &
 +
\mathit{n}_\mathrm{AB} (\mathrm{A}\!:\!\mathrm{B}) &
 +
\mathit{n}_\mathrm{AC} (\mathrm{A}\!:\!\mathrm{C})
 
\\
 
\\
n_{BA} (B\!:\!A) & n_{BB} (B\!:\!B) & n_{BC} (B\!:\!C)
+
\mathit{n}_\mathrm{BA} (\mathrm{B}\!:\!\mathrm{A}) &
 +
\mathit{n}_\mathrm{BB} (\mathrm{B}\!:\!\mathrm{B}) &
 +
\mathit{n}_\mathrm{BC} (\mathrm{B}\!:\!\mathrm{C})
 
\\
 
\\
n_{CA} (C\!:\!A) & n_{CB} (C\!:\!B) & n_{CC} (C\!:\!C)
+
\mathit{n}_\mathrm{CA} (\mathrm{C}\!:\!\mathrm{A}) &
 +
\mathit{n}_\mathrm{CB} (\mathrm{C}\!:\!\mathrm{B}) &
 +
\mathit{n}_\mathrm{CC} (\mathrm{C}\!:\!\mathrm{C})
 
\end{bmatrix}</math>
 
\end{bmatrix}</math>
 
|}
 
|}
   −
More specifically, let <math>n\!</math> be such that:
+
More specifically, let <math>\mathit{n}\!</math> be such that:
    
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
 
| align="center" |
 
| align="center" |
 
<math>\begin{array}{l}
 
<math>\begin{array}{l}
A ~\text{is a noder of}~ A ~\text{and}~ B,
+
\mathrm{A} ~\text{is a noder of}~ \mathrm{A} ~\text{and}~ \mathrm{B},
 
\\
 
\\
B ~\text{is a noder of}~ B ~\text{and}~ C,
+
\mathrm{B} ~\text{is a noder of}~ \mathrm{B} ~\text{and}~ \mathrm{C},
 
\\
 
\\
C ~\text{is a noder of}~ C ~\text{and}~ A.
+
\mathrm{C} ~\text{is a noder of}~ \mathrm{C} ~\text{and}~ \mathrm{A}.
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
   −
Filling in the instantial values of the coefficients <math>n_{ij},\!</math> as the indices <math>i\!</math> and <math>j\!</math> range over the universe of discourse, the relation <math>n\!</math> is represented by the following matrix:
+
Filling in the instantial values of the coefficients <math>\mathit{n}_{ij},\!</math> as the indices <math>i\!</math> and <math>j\!</math> range over the universe of discourse, the relation <math>\mathit{n}\!</math> is represented by the following matrix:
    
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
 
| align="center" |
 
| align="center" |
 
<math>\begin{bmatrix}
 
<math>\begin{bmatrix}
1 \cdot (A\!:\!A) & 1 \cdot (A\!:\!B) & 0 \cdot (A\!:\!C)
+
1 \cdot (\mathrm{A}\!:\!\mathrm{A}) &
 +
1 \cdot (\mathrm{A}\!:\!\mathrm{B}) &
 +
0 \cdot (\mathrm{A}\!:\!\mathrm{C})
 
\\
 
\\
0 \cdot (B\!:\!A) & 1 \cdot (B\!:\!B) & 1 \cdot (B\!:\!C)
+
0 \cdot (\mathrm{B}\!:\!\mathrm{A}) &
 +
1 \cdot (\mathrm{B}\!:\!\mathrm{B}) &
 +
1 \cdot (\mathrm{B}\!:\!\mathrm{C})
 
\\
 
\\
1 \cdot (C\!:\!A) & 0 \cdot (C\!:\!B) & 1 \cdot (C\!:\!C)
+
1 \cdot (\mathrm{C}\!:\!\mathrm{A}) &
 +
0 \cdot (\mathrm{C}\!:\!\mathrm{B}) &
 +
1 \cdot (\mathrm{C}\!:\!\mathrm{C})
 
\end{bmatrix}</math>
 
\end{bmatrix}</math>
 
|}
 
|}
Line 3,261: Line 3,273:     
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
| <math>n ~=~ A\!:\!A ~+~ B\!:\!B ~+~ C\!:\!C ~+~ A\!:\!B ~+~ B\!:\!C ~+~ C\!:\!A</math>
+
| <math>n ~=~ \mathrm{A}\!:\!\mathrm{A} ~+~ \mathrm{B}\!:\!\mathrm{B} ~+~ \mathrm{C}\!:\!\mathrm{C} ~+~ \mathrm{A}\!:\!\mathrm{B} ~+~ \mathrm{B}\!:\!\mathrm{C} ~+~ \mathrm{C}\!:\!\mathrm{A}</math>
 
|}
 
|}
 +
 +
Recognizing <math>\mathit{1} = \mathrm{A}\!:\!\mathrm{A} + \mathrm{B}\!:\!\mathrm{B} + \mathrm{C}\!:\!\mathrm{C}</math> to be the identity transformation, the 2-adic relation <math>\mathit{n} = {}^{\backprime\backprime}\, \text{noder of}\, \underline{~~~~}\, {}^{\prime\prime}</math> may be represented by an element <math>\mathit{1} + \mathrm{A}\!:\!\mathrm{B} + \mathrm{B}\!:\!\mathrm{C} + \mathrm{C}\!:\!\mathrm{A}</math> of the so-called ''group ring'', all of which just makes this element a special sort of linear transformation.
    
<pre>
 
<pre>
Recognizing !1! = A:A + B:B + C:C to be the identity transformation,
  −
the 2-adic relation n = "noder of" may be represented by an element
  −
!1! + A:B + B:C + C:A of the so-called "group ring", all of which
  −
just makes this element a special sort of linear transformation.
  −
   
Up to this point, we are still reading the elementary relatives of
 
Up to this point, we are still reading the elementary relatives of
 
the form I:J in the way that Peirce reads them in logical contexts:
 
the form I:J in the way that Peirce reads them in logical contexts:
12,080

edits