Changes

→‎Note 20: centering + spacing
Line 3,561: Line 3,561:  
By way of collecting a short-term pay-off for all the work &mdash; not to mention all the peirce-spiration &mdash; that we sweated out over the regular representations of the Klein 4-group <math>V_4,\!</math> let us write out as quickly as possible in ''relative form'' a minimal budget of representations of the symmetric group on three letters, <math>S_3 = \operatorname{Sym}(3).</math>  After doing the usual bit of compare and contrast among these divers representations, we will have enough concrete material beneath our abstract belts to tackle a few of the presently obscur'd details of Peirce's early "Algebra + Logic" papers.
 
By way of collecting a short-term pay-off for all the work &mdash; not to mention all the peirce-spiration &mdash; that we sweated out over the regular representations of the Klein 4-group <math>V_4,\!</math> let us write out as quickly as possible in ''relative form'' a minimal budget of representations of the symmetric group on three letters, <math>S_3 = \operatorname{Sym}(3).</math>  After doing the usual bit of compare and contrast among these divers representations, we will have enough concrete material beneath our abstract belts to tackle a few of the presently obscur'd details of Peirce's early "Algebra + Logic" papers.
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellpadding="10" width="90%"
 
| align="center" |
 
| align="center" |
 
<pre>
 
<pre>
Line 3,584: Line 3,584:  
Writing this table in relative form generates the following natural representation of <math>S_3.\!</math>
 
Writing this table in relative form generates the following natural representation of <math>S_3.\!</math>
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellpadding="10" width="90%"
|
+
| align="center" |
 
<math>\begin{matrix}
 
<math>\begin{matrix}
 
\operatorname{e}
 
\operatorname{e}
& = & \operatorname{A}:\operatorname{A}
+
& = & \operatorname{A}\!:\!\operatorname{A}
& + & \operatorname{B}:\operatorname{B}
+
& + & \operatorname{B}\!:\!\operatorname{B}
& + & \operatorname{C}:\operatorname{C}
+
& + & \operatorname{C}\!:\!\operatorname{C}
 
\\[4pt]
 
\\[4pt]
 
\operatorname{f}
 
\operatorname{f}
& = & \operatorname{A}:\operatorname{C}
+
& = & \operatorname{A}\!:\!\operatorname{C}
& + & \operatorname{B}:\operatorname{A}
+
& + & \operatorname{B}\!:\!\operatorname{A}
& + & \operatorname{C}:\operatorname{B}
+
& + & \operatorname{C}\!:\!\operatorname{B}
 
\\[4pt]
 
\\[4pt]
 
\operatorname{g}
 
\operatorname{g}
& = & \operatorname{A}:\operatorname{B}
+
& = & \operatorname{A}\!:\!\operatorname{B}
& + & \operatorname{B}:\operatorname{C}
+
& + & \operatorname{B}\!:\!\operatorname{C}
& + & \operatorname{C}:\operatorname{A}
+
& + & \operatorname{C}\!:\!\operatorname{A}
 
\\[4pt]
 
\\[4pt]
 
\operatorname{h}
 
\operatorname{h}
& = & \operatorname{A}:\operatorname{A}
+
& = & \operatorname{A}\!:\!\operatorname{A}
& + & \operatorname{B}:\operatorname{C}
+
& + & \operatorname{B}\!:\!\operatorname{C}
& + & \operatorname{C}:\operatorname{B}
+
& + & \operatorname{C}\!:\!\operatorname{B}
 
\\[4pt]
 
\\[4pt]
 
\operatorname{i}
 
\operatorname{i}
& = & \operatorname{A}:\operatorname{C}
+
& = & \operatorname{A}\!:\!\operatorname{C}
& + & \operatorname{B}:\operatorname{B}
+
& + & \operatorname{B}\!:\!\operatorname{B}
& + & \operatorname{C}:\operatorname{A}
+
& + & \operatorname{C}\!:\!\operatorname{A}
 
\\[4pt]
 
\\[4pt]
 
\operatorname{j}
 
\operatorname{j}
& = & \operatorname{A}:\operatorname{B}
+
& = & \operatorname{A}\!:\!\operatorname{B}
& + & \operatorname{B}:\operatorname{A}
+
& + & \operatorname{B}\!:\!\operatorname{A}
& + & \operatorname{C}:\operatorname{C}
+
& + & \operatorname{C}\!:\!\operatorname{C}
 
\end{matrix}</math>
 
\end{matrix}</math>
 
|}
 
|}
12,080

edits