Line 3,277: |
Line 3,277: |
| If we analyze this in accord with the spreadsheet model of relational composition, the core of it is a particular way of composing a 3-adic ''giving'' relation <math>G \subseteq X \times Y \times Z</math> with a 2-adic ''training'' relation <math>T \subseteq Y \times Z</math> in such a way as to determine a certain 2-adic relation <math>(G \circ T) \subseteq X \times Z.</math> Table 13 schematizes the associated constraints on tuples. | | If we analyze this in accord with the spreadsheet model of relational composition, the core of it is a particular way of composing a 3-adic ''giving'' relation <math>G \subseteq X \times Y \times Z</math> with a 2-adic ''training'' relation <math>T \subseteq Y \times Z</math> in such a way as to determine a certain 2-adic relation <math>(G \circ T) \subseteq X \times Z.</math> Table 13 schematizes the associated constraints on tuples. |
| | | |
− | {| align="center" cellspacing="6" width="90%" | + | <br> |
− | | align="center" |
| + | |
− | <pre>
| + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | Table 13. Another Brand of Composition | + | |+ '''Table 13. Another Brand of Composition''' |
− | o---------o---------o---------o---------o
| + | |- |
− | | # !1! | !1! | !1! | | + | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | |
− | o=========o=========o=========o=========o
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
− | | G # X | Y | Z | | + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
− | o---------o---------o---------o---------o
| + | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> |
− | | T # | Y | Z | | + | |- |
− | o---------o---------o---------o---------o
| + | | style="border-right:1px solid black" | <math>G\!</math> |
− | | G o T # X | | Z | | + | | <math>X\!</math> |
− | o---------o---------o---------o---------o
| + | | <math>Y\!</math> |
− | </pre> | + | | <math>Z\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>T\!</math> |
| + | | |
| + | | <math>Y\!</math> |
| + | | <math>Z\!</math> |
| + | |- |
| + | | style="border-right:1px solid black" | <math>G \circ T</math> |
| + | | <math>X\!</math> |
| + | | |
| + | | <math>Z\!</math> |
| |} | | |} |
| + | |
| + | <br> |
| | | |
| So we see that the notorious teridentity relation, which I have left equivocally denoted by the same symbol as the identity relation <math>\mathit{1},\!</math> is already implicit in Peirce's discussion at this point. | | So we see that the notorious teridentity relation, which I have left equivocally denoted by the same symbol as the identity relation <math>\mathit{1},\!</math> is already implicit in Peirce's discussion at this point. |