Changes

MyWikiBiz, Author Your Legacy — Monday December 23, 2024
Jump to navigationJump to search
→‎Note 23: format table of permutations
Line 3,945: Line 3,945:  
Recalling the manner of our acquaintance with the symmetric group <math>S_3,\!</math> we began with the ''bigraph'' (bipartite graph) picture of its natural representation as the set of all permutations or substitutions on the set <math>X = \{ \mathrm{A}, \mathrm{B}, \mathrm{C} \}.\!</math>
 
Recalling the manner of our acquaintance with the symmetric group <math>S_3,\!</math> we began with the ''bigraph'' (bipartite graph) picture of its natural representation as the set of all permutations or substitutions on the set <math>X = \{ \mathrm{A}, \mathrm{B}, \mathrm{C} \}.\!</math>
   −
{| align="center" cellpadding="6" width="90%"
+
<br>
| align="center" |
+
 
<pre>
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%"
Table 1.  Permutations or Substitutions in Sym {A, B, C}
+
|+ <math>\text{Permutation Substitutions in}~ \operatorname{Sym} \{ \mathrm{A}, \mathrm{B}, \mathrm{C} \}</math>
o---------o---------o---------o---------o---------o---------o
+
|- style="background:#f0f0ff"
|         |         |         |         |         |        |
+
| width="16%" | <math>\operatorname{e}</math>
|   e    |   f    |   g    |   h    |   i    |   j   |
+
| width="16%" | <math>\operatorname{f}</math>
|         |        |        |        |        |        |
+
| width="16%" | <math>\operatorname{g}</math>
o=========o=========o=========o=========o=========o=========o
+
| width="16%" | <math>\operatorname{h}</math>
|        |        |        |        |        |        |
+
| width="16%" | <math>\operatorname{i}</math>
A B C | A B C A B | A B C |  A B C | A B C |
+
| width="16%" | <math>\operatorname{j}</math>
|        |        |        |        |        |        |
+
|-
|  | | |  |  | | |  |  | | |  |  | | |  |  | | |  |  | | |  |
+
|
|  v v v  |  v v v  |  v v v  |  v v v  |  v v v  |  v v v  |
+
<math>\begin{matrix}
|        |        |        |        |        |        |
+
\mathrm{A} & \mathrm{B} & \mathrm{C}
A B C C A B |  B C A | A C B C B A |  B A C |
+
\\[3pt]
|        |        |        |        |        |        |
+
\downarrow & \downarrow & \downarrow
o---------o---------o---------o---------o---------o---------o
+
\\[6pt]
</pre>
+
\mathrm{A} & \mathrm{B} & \mathrm{C}
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
\mathrm{A} & \mathrm{B} & \mathrm{C}
 +
\\[3pt]
 +
\downarrow & \downarrow & \downarrow
 +
\\[6pt]
 +
\mathrm{C} & \mathrm{A} & \mathrm{B}
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
\mathrm{A} & \mathrm{B} & \mathrm{C}
 +
\\[3pt]
 +
\downarrow & \downarrow & \downarrow
 +
\\[6pt]
 +
\mathrm{B} & \mathrm{C} & \mathrm{A}
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
\mathrm{A} & \mathrm{B} & \mathrm{C}
 +
\\[3pt]
 +
\downarrow & \downarrow & \downarrow
 +
\\[6pt]
 +
\mathrm{A} & \mathrm{C} & \mathrm{B}
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
\mathrm{A} & \mathrm{B} & \mathrm{C}
 +
\\[3pt]
 +
\downarrow & \downarrow & \downarrow
 +
\\[6pt]
 +
\mathrm{C} & \mathrm{B} & \mathrm{A}
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
\mathrm{A} & \mathrm{B} & \mathrm{C}
 +
\\[3pt]
 +
\downarrow & \downarrow & \downarrow
 +
\\[6pt]
 +
\mathrm{B} & \mathrm{A} & \mathrm{C}
 +
\end{matrix}</math>
 
|}
 
|}
 +
 +
<br>
    
Then we rewrote these permutations &mdash; being functions <math>f : X \to X</math> they can also be recognized as being 2-adic relations <math>f \subseteq X \times X</math> &mdash; in ''relative form'', in effect, in the manner to which Peirce would have made us accustomed had he been given a relative half-a-chance:
 
Then we rewrote these permutations &mdash; being functions <math>f : X \to X</math> they can also be recognized as being 2-adic relations <math>f \subseteq X \times X</math> &mdash; in ''relative form'', in effect, in the manner to which Peirce would have made us accustomed had he been given a relative half-a-chance:
12,080

edits

Navigation menu