Changes

→‎Note 23: centering + spacing
Line 3,855: Line 3,855:  
We've seen a couple of groups, <math>V_4\!</math> and <math>S_3,\!</math> represented in various ways, and we've seen their representations presented in a variety of different manners.  Let us look at one other stylistic variant for presenting a representation that is frequently seen, the so-called ''matrix representation'' of a group.
 
We've seen a couple of groups, <math>V_4\!</math> and <math>S_3,\!</math> represented in various ways, and we've seen their representations presented in a variety of different manners.  Let us look at one other stylistic variant for presenting a representation that is frequently seen, the so-called ''matrix representation'' of a group.
   −
Recalling the manner of our acquaintance with the symmetric group <math>S_3,\!</math> we began with the ''bigraph'' (bipartite graph) picture of its natural representation as the set of all permutations or substitutions on the set <math>X = \{ A, B, C \}.\!</math>
+
Recalling the manner of our acquaintance with the symmetric group <math>S_3,\!</math> we began with the ''bigraph'' (bipartite graph) picture of its natural representation as the set of all permutations or substitutions on the set <math>X = \{ \mathrm{A}, \mathrm{B}, \mathrm{C} \}.\!</math>
    
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
Line 3,881: Line 3,881:     
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
|
+
| align="center" |
 
<math>\begin{matrix}
 
<math>\begin{matrix}
 
\operatorname{e}
 
\operatorname{e}
& = & \operatorname{A}:\operatorname{A}
+
& = & \mathrm{A}\!:\!\mathrm{A}
& + & \operatorname{B}:\operatorname{B}
+
& + & \mathrm{B}\!:\!\mathrm{B}
& + & \operatorname{C}:\operatorname{C}
+
& + & \mathrm{C}\!:\!\mathrm{C}
 
\\[4pt]
 
\\[4pt]
 
\operatorname{f}
 
\operatorname{f}
& = & \operatorname{A}:\operatorname{C}
+
& = & \mathrm{A}\!:\!\mathrm{C}
& + & \operatorname{B}:\operatorname{A}
+
& + & \mathrm{B}\!:\!\mathrm{A}
& + & \operatorname{C}:\operatorname{B}
+
& + & \mathrm{C}\!:\!\mathrm{B}
 
\\[4pt]
 
\\[4pt]
 
\operatorname{g}
 
\operatorname{g}
& = & \operatorname{A}:\operatorname{B}
+
& = & \mathrm{A}\!:\!\mathrm{B}
& + & \operatorname{B}:\operatorname{C}
+
& + & \mathrm{B}\!:\!\mathrm{C}
& + & \operatorname{C}:\operatorname{A}
+
& + & \mathrm{C}\!:\!\mathrm{A}
 
\\[4pt]
 
\\[4pt]
 
\operatorname{h}
 
\operatorname{h}
& = & \operatorname{A}:\operatorname{A}
+
& = & \mathrm{A}\!:\!\mathrm{A}
& + & \operatorname{B}:\operatorname{C}
+
& + & \mathrm{B}\!:\!\mathrm{C}
& + & \operatorname{C}:\operatorname{B}
+
& + & \mathrm{C}\!:\!\mathrm{B}
 
\\[4pt]
 
\\[4pt]
 
\operatorname{i}
 
\operatorname{i}
& = & \operatorname{A}:\operatorname{C}
+
& = & \mathrm{A}\!:\!\mathrm{C}
& + & \operatorname{B}:\operatorname{B}
+
& + & \mathrm{B}\!:\!\mathrm{B}
& + & \operatorname{C}:\operatorname{A}
+
& + & \mathrm{C}\!:\!\mathrm{A}
 
\\[4pt]
 
\\[4pt]
 
\operatorname{j}
 
\operatorname{j}
& = & \operatorname{A}:\operatorname{B}
+
& = & \mathrm{A}\!:\!\mathrm{B}
& + & \operatorname{B}:\operatorname{A}
+
& + & \mathrm{B}\!:\!\mathrm{A}
& + & \operatorname{C}:\operatorname{C}
+
& + & \mathrm{C}\!:\!\mathrm{C}
 
\end{matrix}</math>
 
\end{matrix}</math>
 
|}
 
|}
Line 3,938: Line 3,938:     
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
|
+
| align="center" |
 
<math>\begin{bmatrix}
 
<math>\begin{bmatrix}
 
\mathrm{A}\!:\!\mathrm{A} &
 
\mathrm{A}\!:\!\mathrm{A} &
12,080

edits