Line 3,855: |
Line 3,855: |
| We've seen a couple of groups, <math>V_4\!</math> and <math>S_3,\!</math> represented in various ways, and we've seen their representations presented in a variety of different manners. Let us look at one other stylistic variant for presenting a representation that is frequently seen, the so-called ''matrix representation'' of a group. | | We've seen a couple of groups, <math>V_4\!</math> and <math>S_3,\!</math> represented in various ways, and we've seen their representations presented in a variety of different manners. Let us look at one other stylistic variant for presenting a representation that is frequently seen, the so-called ''matrix representation'' of a group. |
| | | |
− | Recalling the manner of our acquaintance with the symmetric group <math>S_3,\!</math> we began with the ''bigraph'' (bipartite graph) picture of its natural representation as the set of all permutations or substitutions on the set <math>X = \{ A, B, C \}.\!</math> | + | Recalling the manner of our acquaintance with the symmetric group <math>S_3,\!</math> we began with the ''bigraph'' (bipartite graph) picture of its natural representation as the set of all permutations or substitutions on the set <math>X = \{ \mathrm{A}, \mathrm{B}, \mathrm{C} \}.\!</math> |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
Line 3,881: |
Line 3,881: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
− | | | + | | align="center" | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
| \operatorname{e} | | \operatorname{e} |
− | & = & \operatorname{A}:\operatorname{A} | + | & = & \mathrm{A}\!:\!\mathrm{A} |
− | & + & \operatorname{B}:\operatorname{B} | + | & + & \mathrm{B}\!:\!\mathrm{B} |
− | & + & \operatorname{C}:\operatorname{C} | + | & + & \mathrm{C}\!:\!\mathrm{C} |
| \\[4pt] | | \\[4pt] |
| \operatorname{f} | | \operatorname{f} |
− | & = & \operatorname{A}:\operatorname{C} | + | & = & \mathrm{A}\!:\!\mathrm{C} |
− | & + & \operatorname{B}:\operatorname{A} | + | & + & \mathrm{B}\!:\!\mathrm{A} |
− | & + & \operatorname{C}:\operatorname{B} | + | & + & \mathrm{C}\!:\!\mathrm{B} |
| \\[4pt] | | \\[4pt] |
| \operatorname{g} | | \operatorname{g} |
− | & = & \operatorname{A}:\operatorname{B} | + | & = & \mathrm{A}\!:\!\mathrm{B} |
− | & + & \operatorname{B}:\operatorname{C} | + | & + & \mathrm{B}\!:\!\mathrm{C} |
− | & + & \operatorname{C}:\operatorname{A} | + | & + & \mathrm{C}\!:\!\mathrm{A} |
| \\[4pt] | | \\[4pt] |
| \operatorname{h} | | \operatorname{h} |
− | & = & \operatorname{A}:\operatorname{A} | + | & = & \mathrm{A}\!:\!\mathrm{A} |
− | & + & \operatorname{B}:\operatorname{C} | + | & + & \mathrm{B}\!:\!\mathrm{C} |
− | & + & \operatorname{C}:\operatorname{B} | + | & + & \mathrm{C}\!:\!\mathrm{B} |
| \\[4pt] | | \\[4pt] |
| \operatorname{i} | | \operatorname{i} |
− | & = & \operatorname{A}:\operatorname{C} | + | & = & \mathrm{A}\!:\!\mathrm{C} |
− | & + & \operatorname{B}:\operatorname{B} | + | & + & \mathrm{B}\!:\!\mathrm{B} |
− | & + & \operatorname{C}:\operatorname{A} | + | & + & \mathrm{C}\!:\!\mathrm{A} |
| \\[4pt] | | \\[4pt] |
| \operatorname{j} | | \operatorname{j} |
− | & = & \operatorname{A}:\operatorname{B} | + | & = & \mathrm{A}\!:\!\mathrm{B} |
− | & + & \operatorname{B}:\operatorname{A} | + | & + & \mathrm{B}\!:\!\mathrm{A} |
− | & + & \operatorname{C}:\operatorname{C} | + | & + & \mathrm{C}\!:\!\mathrm{C} |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
Line 3,938: |
Line 3,938: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
− | | | + | | align="center" | |
| <math>\begin{bmatrix} | | <math>\begin{bmatrix} |
| \mathrm{A}\!:\!\mathrm{A} & | | \mathrm{A}\!:\!\mathrm{A} & |