Changes

MyWikiBiz, Author Your Legacy — Sunday December 22, 2024
Jump to navigationJump to search
Line 3,145: Line 3,145:  
In the paper "On the Relative Forms of Quaternions" (CP 3.323), we observe Peirce providing the following sorts of explanation:
 
In the paper "On the Relative Forms of Quaternions" (CP 3.323), we observe Peirce providing the following sorts of explanation:
   −
<pre>
+
{| align="center" cellpadding="6" width="90%"
| If X, Y, Z denote the three rectangular components of a vector, and W denote
  −
| numerical unity (or a fourth rectangular component, involving space of four
  −
| dimensions), and (Y:Z) denote the operation of converting the Y component
  −
| of a vector into its Z component, then
   
|
 
|
|     1 = (W:W) + (X:X) + (Y:Y) + (Z:Z)
+
<p>If <math>X, Y, Z\!</math> denote the three rectangular components of a vector, and <math>W\!</math> denote numerical unity (or a fourth rectangular component, involving space of four dimensions), and <math>(Y:Z)\!</math> denote the operation of converting the <math>Y\!</math> component of a vector into its <math>Z\!</math> component, then</p>
 +
|-
 +
| align="center" |
 +
<math>\begin{matrix}
 +
1 & = & (W:W) & + & (X:X) & + & (Y:Y) & + & (Z:Z)
 +
\\
 +
i & = & (X:W) & - & (W:X) & - & (Y:Z) & + & (Z:Y)
 +
\\
 +
j & = & (Y:W) & - & (W:Y) & - & (Z:X) & + & (X:Z)
 +
\\
 +
k & = & (Z:W) & - & (W:Z) & - & (X:Y) & + & (Y:X)
 +
\end{matrix}</math>
 +
|-
 
|
 
|
|    i  = (X:W) - (W:X) - (Y:Z) + (Z:Y)
+
<p>In the language of logic <math>(Y:Z)\!</math> is a relative term whose relate is a <math>Y\!</math> component, and whose correlate is a <math>Z\!</math> component. The law of multiplication is plainly <math>(Y:Z)(Z:X) = (Y:X),\!</math> <math>(Y:Z)(X:W) = 0,\!</math> and the application of these rules to the above values of <math>1, i, j, k\!</math> gives the quaternion relations</p>
 +
|-
 +
| align="center" |
 +
<math>i^2 = j^2 = k^2 = -1, \quad ijk = -1, \quad \text{etc}.</math>
 +
|-
 
|
 
|
|    j  =  (Y:W) - (W:Y) - (Z:X) + (X:Z)
+
<p>The symbol <math>a(Y:Z)\!</math> denotes the changing of <math>Y\!</math> to <math>Z\!</math> and the multiplication of the result by <math>a.\!</math>  If the relatives be arranged in a block</p>
 +
|-
 +
| align="center" |
 +
<math>\begin{matrix}
 +
W:W && W:X && W:Y && W:Z
 +
\\
 +
X:W && X:X && X:Y && X:Z
 +
\\
 +
Y:W && Y:X && Y:Y && Y:Z
 +
\\
 +
Z:W && Z:X && Z:Y && Z:Z
 +
\end{matrix}</math>
 +
|-
 
|
 
|
|     k = (Z:W) - (W:Z) - (X:Y) + (Y:X)
+
<p>then the quaternion <math>w + xi + yj + zk\!</math> is represented by the matrix of numbers</p>
 +
|-
 +
| align="center" |
 +
<math>\begin{array}{*{7}{r}}
 +
w && -x && -y && -z
 +
\\
 +
x && w && -z &&  y
 +
\\
 +
y &&  z && w && -x
 +
\\
 +
z && -y &&  x &&  w
 +
\end{array}</math>
 +
|-
 
|
 
|
| In the language of logic (Y:Z) is a relative term whose relate is
+
<p>The multiplication of such matrices follows the same laws as the multiplication of quaternions.  The determinant of the matrix = the fourth power of the tensor of the quaternion.</p>
| a Y component, and whose correlate is a Z component.  The law of
+
 
| multiplication is plainly (Y:Z)(Z:X) = (Y:X), (Y:Z)(X:W) = 0,
+
<p>The imaginary <math>x + y \sqrt{-1}</math> may likewise be represented by the matrix</p>
| and the application of these rules to the above values of
+
|-
| 1, i, j, k gives the quaternion relations
+
| align="center" |
 +
<math>\begin{array}{rr}
 +
x & y
 +
\\
 +
-y & x
 +
\end{array}</math>
 +
|-
 
|
 
|
|    i^2  =  j^2  =  k^2  =  -1,
+
<p>and the determinant of the matrix = the square of the modulus.</p>
|
+
 
|    ijk  =  -1,
+
<p>C.S. Peirce, ''Johns Hopkins University Circulars'', No.&nbsp;13, p.&nbsp;179, 1882. Reprinted, ''Collected Papers'', CP&nbsp;3.323.</p>
|
+
|}
|    etc.
  −
|
  −
| The symbol a(Y:Z) denotes the changing of Y to Z and the
  −
| multiplication of the result by 'a'.  If the relatives be
  −
| arranged in a block
  −
|
  −
|    W:W    W:X    W:Y    W:Z
  −
|
  −
|    X:W    X:X    X:Y    X:Z
  −
|
  −
|    Y:W    Y:X    Y:Y    Y:Z
  −
|
  −
|    Z:W    Z:X    Z:Y    Z:Z
  −
|
  −
| then the quaternion w + xi + yj + zk
  −
| is represented by the matrix of numbers
  −
|
  −
|    w      -x      -y      -z
  −
|
  −
|    x        w      -z      y
  −
|
  −
|    y        z      w      -x
  −
|
  −
|    z      -y      x      w
  −
|
  −
| The multiplication of such matrices follows the same laws as the
  −
| multiplication of quaternions.  The determinant of the matrix =
  −
| the fourth power of the tensor of the quaternion.
  −
|
  −
| The imaginary x + y(-1)^(1/2) may likewise be represented by the matrix
  −
|
  −
|      x      y
  −
|
  −
|    -y      x
  −
|
  −
| and the determinant of the matrix = the square of the modulus.
  −
|
  −
| Charles Sanders Peirce, 'Collected Papers', CP 3.323.
  −
|'Johns Hopkins University Circulars', No. 13, p. 179, 1882.
  −
</pre>
      
This way of talking is the mark of a person who opts to multiply his matrices "on the rignt", as they say.  Yet Peirce still continues to call the first element of the ordered pair <math>(I:J)\!</math> its "relate" while calling the second element of the pair <math>(I:J)\!</math> its "correlate".  That doesn't comport very well, so far as I can tell, with his customary reading of relative terms, suited more to the multiplication of matrices "on the left".
 
This way of talking is the mark of a person who opts to multiply his matrices "on the rignt", as they say.  Yet Peirce still continues to call the first element of the ordered pair <math>(I:J)\!</math> its "relate" while calling the second element of the pair <math>(I:J)\!</math> its "correlate".  That doesn't comport very well, so far as I can tell, with his customary reading of relative terms, suited more to the multiplication of matrices "on the left".
12,080

edits

Navigation menu