MyWikiBiz, Author Your Legacy — Tuesday November 26, 2024
Jump to navigationJump to search
107 bytes added
, 20:28, 11 December 2008
Line 429: |
Line 429: |
| ==Functional Quantifiers== | | ==Functional Quantifiers== |
| | | |
− | The ''umpire measure'' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> takes a proposition of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as argument, giving the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> a value of 1 and everything else a value of 0. Expressed in symbolic form: | + | The ''umpire measure'' of type <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> takes a single proposition of type <math>\mathbb{B}^2 \to \mathbb{B}</math> as argument, giving the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> a value of 1 and everything else a value of 0. Expressed in symbolic form: |
| | | |
| {| align="center" cellpadding="8" | | {| align="center" cellpadding="8" |
− | | <math>\Upsilon p = 1 \quad \Leftrightarrow \quad p = 1.</math> | + | | <math>\Upsilon \langle p \rangle = 1 \quad \Leftrightarrow \quad p = 1.</math> |
| |} | | |} |
| | | |
Line 445: |
Line 445: |
| The auxiliary notations: | | The auxiliary notations: |
| | | |
− | : <math>\alpha_i f = \Upsilon (f_i, f) = \Upsilon (f_i \Rightarrow f)</math> | + | : <math>\alpha_i f = \Upsilon \langle f_i, f \rangle = \Upsilon \langle f_i \Rightarrow f \rangle</math> |
| | | |
− | : <math>\beta_i f = \Upsilon (f, f_i) = \Upsilon (f \Rightarrow f_i)</math> | + | : <math>\beta_i f = \Upsilon \langle f, f_i \rangle = \Upsilon \langle f \Rightarrow f_i \rangle</math> |
| | | |
| define two series of measures: | | define two series of measures: |
Line 456: |
Line 456: |
| | | |
| {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
− | |+ '''Table 1. Qualifiers of Implication Ordering: <math>\alpha_i f = \Upsilon (f_i \Rightarrow f)</math>''' | + | |+ '''Table 1. Qualifiers of Implication Ordering: <math>\alpha_i f = \Upsilon \langle f_i \Rightarrow f \rangle</math>''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| | align="right" | <math>p:</math><br><math>q:</math> | | | align="right" | <math>p:</math><br><math>q:</math> |
Line 544: |
Line 544: |
| | | |
| {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
− | |+ '''Table 2. Qualifiers of Implication Ordering: <math>\beta_i f = \Upsilon (f \Rightarrow f_i)</math>''' | + | |+ '''Table 2. Qualifiers of Implication Ordering: <math>\beta_i f = \Upsilon \langle f \Rightarrow f_i \rangle</math>''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| | align="right" | <math>p:</math><br><math>q:</math> | | | align="right" | <math>p:</math><br><math>q:</math> |