Line 2: |
Line 2: |
| | | |
| ==Truth Tables== | | ==Truth Tables== |
| + | |
| + | ===New Version=== |
| | | |
| <br> | | <br> |
| | | |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
− | |+ <math>\text{Table A1.}~~\text{Propositional Forms on Two Variables}</math> | + | |+ <math>\text{Table 1.}~~\text{Logical Boundaries and Their Complements}</math> |
| |- style="background:#f0f0ff" | | |- style="background:#f0f0ff" |
− | | width="15%" | | + | | width="25%" | <math>\mathcal{L}_1</math> |
− | <p><math>\mathcal{L}_1</math></p>
| + | | width="25%" | <math>\mathcal{L}_2</math> |
− | <p><math>\text{Decimal}</math></p>
| + | | width="25%" | <math>\mathcal{L}_3</math> |
− | | width="15%" | | + | | width="25%" | <math>\mathcal{L}_4</math> |
− | <p><math>\mathcal{L}_2</math></p>
| |
− | <p><math>\text{Binary}</math></p>
| |
− | | width="15%" | | |
− | <p><math>\mathcal{L}_3</math></p>
| |
− | <p><math>\text{Vector}</math></p>
| |
− | | width="15%" | | |
− | <p><math>\mathcal{L}_4</math></p>
| |
− | <p><math>\text{Cactus}</math></p>
| |
− | | width="25%" |
| |
− | <p><math>\mathcal{L}_5</math></p>
| |
− | <p><math>\text{English}</math></p>
| |
− | | width="15%" |
| |
− | <p><math>\mathcal{L}_6</math></p>
| |
− | <p><math>\text{Ordinary}</math></p>
| |
| |- style="background:#f0f0ff" | | |- style="background:#f0f0ff" |
| | | | | |
| | align="right" | <math>p\colon\!</math> | | | align="right" | <math>p\colon\!</math> |
− | | <math>1~1~0~0</math> | + | | <math>1~1~1~1~0~0~0~0</math> |
− | |
| |
− | |
| |
| | | | | |
| |- style="background:#f0f0ff" | | |- style="background:#f0f0ff" |
| | | | | |
| | align="right" | <math>q\colon\!</math> | | | align="right" | <math>q\colon\!</math> |
− | | <math>1~0~1~0</math> | + | | <math>1~1~0~0~1~1~0~0</math> |
| | | | | |
| + | |- style="background:#f0f0ff" |
| | | | | |
| + | | align="right" | <math>r\colon\!</math> |
| + | | <math>1~0~1~0~1~0~1~0</math> |
| | | | | |
| |- | | |- |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | f_0
| + | f_{104} |
| \\[4pt] | | \\[4pt] |
− | f_1
| + | f_{148} |
| \\[4pt] | | \\[4pt] |
− | f_2
| + | f_{146} |
| \\[4pt] | | \\[4pt] |
− | f_3
| + | f_{97} |
| \\[4pt] | | \\[4pt] |
− | f_4
| + | f_{134} |
| \\[4pt] | | \\[4pt] |
− | f_5
| + | f_{73} |
| \\[4pt] | | \\[4pt] |
− | f_6
| + | f_{41} |
| \\[4pt] | | \\[4pt] |
− | f_7
| + | f_{22} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | f_{0000} | + | f_{01101000} |
| \\[4pt] | | \\[4pt] |
− | f_{0001} | + | f_{10010100} |
| \\[4pt] | | \\[4pt] |
− | f_{0010} | + | f_{10010010} |
| \\[4pt] | | \\[4pt] |
− | f_{0011} | + | f_{01100001} |
| \\[4pt] | | \\[4pt] |
− | f_{0100} | + | f_{10000110} |
| \\[4pt] | | \\[4pt] |
− | f_{0101} | + | f_{01001001} |
| \\[4pt] | | \\[4pt] |
− | f_{0110} | + | f_{00101001} |
| \\[4pt] | | \\[4pt] |
− | f_{0111} | + | f_{00010110} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 0~0~0~0 | + | 0~1~1~0~1~0~0~0 |
| \\[4pt] | | \\[4pt] |
− | 0~0~0~1 | + | 1~0~0~1~0~1~0~0 |
| \\[4pt] | | \\[4pt] |
− | 0~0~1~0 | + | 1~0~0~1~0~0~1~0 |
| \\[4pt] | | \\[4pt] |
− | 0~0~1~1 | + | 0~1~1~0~0~0~0~1 |
| \\[4pt] | | \\[4pt] |
− | 0~1~0~0 | + | 1~0~0~0~0~1~1~0 |
| \\[4pt] | | \\[4pt] |
− | 0~1~0~1 | + | 0~1~0~0~1~0~0~1 |
| \\[4pt] | | \\[4pt] |
− | 0~1~1~0 | + | 0~0~1~0~1~0~0~1 |
| \\[4pt] | | \\[4pt] |
− | 0~1~1~1 | + | 0~0~0~1~0~1~1~0 |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | (~) | + | ( p , q , r ) |
| \\[4pt] | | \\[4pt] |
− | (p)(q) | + | ( p , q , (r)) |
| \\[4pt] | | \\[4pt] |
− | (p)~q~ | + | ( p , (q), r ) |
| \\[4pt] | | \\[4pt] |
− | (p)~~~ | + | ( p , (q), (r)) |
| \\[4pt] | | \\[4pt] |
− | ~p~(q)
| + | ((p), q , r ) |
| \\[4pt] | | \\[4pt] |
− | ~~~(q)
| + | ((p), q , (r)) |
| \\[4pt] | | \\[4pt] |
− | (p,~q) | + | ((p), (q), r ) |
| \\[4pt] | | \\[4pt] |
− | (p~~q) | + | ((p), (q), (r)) |
− | \end{matrix}</math>
| |
− | |
| |
− | <math>\begin{matrix}
| |
− | \text{false}
| |
− | \\[4pt]
| |
− | \text{neither}~ p ~\text{nor}~ q
| |
− | \\[4pt]
| |
− | q ~\text{without}~ p
| |
− | \\[4pt]
| |
− | \text{not}~ p
| |
− | \\[4pt]
| |
− | p ~\text{without}~ q
| |
− | \\[4pt]
| |
− | \text{not}~ q
| |
− | \\[4pt]
| |
− | p ~\text{not equal to}~ q
| |
− | \\[4pt]
| |
− | \text{not both}~ p ~\text{and}~ q
| |
− | \end{matrix}</math>
| |
− | |
| |
− | <math>\begin{matrix}
| |
− | 0
| |
− | \\[4pt]
| |
− | \lnot p \land \lnot q
| |
− | \\[4pt]
| |
− | \lnot p \land q
| |
− | \\[4pt]
| |
− | \lnot p
| |
− | \\[4pt]
| |
− | p \land \lnot q
| |
− | \\[4pt]
| |
− | \lnot q
| |
− | \\[4pt]
| |
− | p \ne q
| |
− | \\[4pt]
| |
− | \lnot p \lor \lnot q
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | f_8
| + | f_{233} |
| \\[4pt] | | \\[4pt] |
− | f_9
| + | f_{214} |
| \\[4pt] | | \\[4pt] |
− | f_{10} | + | f_{182} |
| \\[4pt] | | \\[4pt] |
− | f_{11} | + | f_{121} |
| \\[4pt] | | \\[4pt] |
− | f_{12} | + | f_{158} |
| \\[4pt] | | \\[4pt] |
− | f_{13} | + | f_{109} |
| \\[4pt] | | \\[4pt] |
− | f_{14} | + | f_{107} |
| \\[4pt] | | \\[4pt] |
− | f_{15} | + | f_{151} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | f_{1000} | + | f_{11101001} |
| \\[4pt] | | \\[4pt] |
− | f_{1001} | + | f_{11010110} |
| \\[4pt] | | \\[4pt] |
− | f_{1010} | + | f_{10110110} |
| \\[4pt] | | \\[4pt] |
− | f_{1011} | + | f_{01111001} |
| \\[4pt] | | \\[4pt] |
− | f_{1100} | + | f_{10011110} |
| \\[4pt] | | \\[4pt] |
− | f_{1101} | + | f_{01101101} |
| \\[4pt] | | \\[4pt] |
− | f_{1110} | + | f_{01101011} |
| \\[4pt] | | \\[4pt] |
− | f_{1111} | + | f_{10010111} |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | 1~0~0~0 | + | 1~1~1~0~1~0~0~1 |
| \\[4pt] | | \\[4pt] |
− | 1~0~0~1 | + | 1~1~0~1~0~1~1~0 |
| \\[4pt] | | \\[4pt] |
− | 1~0~1~0 | + | 1~0~1~1~0~1~1~0 |
| \\[4pt] | | \\[4pt] |
− | 1~0~1~1 | + | 0~1~1~1~1~0~0~1 |
| \\[4pt] | | \\[4pt] |
− | 1~1~0~0 | + | 1~0~0~1~1~1~1~0 |
| \\[4pt] | | \\[4pt] |
− | 1~1~0~1 | + | 0~1~1~0~1~1~0~1 |
| \\[4pt] | | \\[4pt] |
− | 1~1~1~0 | + | 0~1~1~0~1~0~1~1 |
| \\[4pt] | | \\[4pt] |
− | 1~1~1~1 | + | 1~0~0~1~0~1~1~1 |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~~p~~q~~
| + | (((p), (q), (r))) |
| \\[4pt] | | \\[4pt] |
− | ((p,~q)) | + | (((p), (q), r )) |
| \\[4pt] | | \\[4pt] |
− | ~~~~~q~~
| + | (((p), q , (r))) |
| \\[4pt] | | \\[4pt] |
− | ~(p~(q))
| + | (((p), q , r )) |
| \\[4pt] | | \\[4pt] |
− | ~~p~~~~~
| + | (( p , (q), (r))) |
| \\[4pt] | | \\[4pt] |
− | ((p)~q)~ | + | (( p , (q), r )) |
| \\[4pt] | | \\[4pt] |
− | ((p)(q)) | + | (( p , q , (r))) |
| \\[4pt] | | \\[4pt] |
− | ((~)) | + | (( p , q , r )) |
− | \end{matrix}</math>
| |
− | |
| |
− | <math>\begin{matrix}
| |
− | p ~\text{and}~ q
| |
− | \\[4pt]
| |
− | p ~\text{equal to}~ q
| |
− | \\[4pt]
| |
− | q
| |
− | \\[4pt]
| |
− | \text{not}~ p ~\text{without}~ q
| |
− | \\[4pt]
| |
− | p
| |
− | \\[4pt]
| |
− | \text{not}~ q ~\text{without}~ p
| |
− | \\[4pt]
| |
− | p ~\text{or}~ q
| |
− | \\[4pt]
| |
− | \text{true}
| |
− | \end{matrix}</math>
| |
− | |
| |
− | <math>\begin{matrix}
| |
− | p \land q
| |
− | \\[4pt]
| |
− | p = q
| |
− | \\[4pt]
| |
− | q
| |
− | \\[4pt]
| |
− | p \Rightarrow q
| |
− | \\[4pt]
| |
− | p
| |
− | \\[4pt]
| |
− | p \Leftarrow q
| |
− | \\[4pt]
| |
− | p \lor q
| |
− | \\[4pt]
| |
− | 1
| |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
| + | |
| + | <br> |
| + | |
| + | ===Old Version=== |
| | | |
| <br> | | <br> |
Line 367: |
Line 288: |
| | 1 0 0 1 0 1 1 1 | | | 1 0 0 1 0 1 1 1 |
| | <math>(( p , q , r ))\!</math> | | | <math>(( p , q , r ))\!</math> |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
| |
− | |+ <math>\text{Table 1.}~~\text{Logical Boundaries and Their Complements}</math>
| |
− | |- style="background:#f0f0ff"
| |
− | | width="25%" | <math>\mathcal{L}_1</math>
| |
− | | width="25%" | <math>\mathcal{L}_2</math>
| |
− | | width="25%" | <math>\mathcal{L}_3</math>
| |
− | | width="25%" | <math>\mathcal{L}_4</math>
| |
− | |- style="background:#f0f0ff"
| |
− | |
| |
− | | align="right" | <math>p\colon\!</math>
| |
− | | <math>1~1~1~1~0~0~0~0</math>
| |
− | |
| |
− | |- style="background:#f0f0ff"
| |
− | |
| |
− | | align="right" | <math>q\colon\!</math>
| |
− | | <math>1~1~0~0~1~1~0~0</math>
| |
− | |
| |
− | |- style="background:#f0f0ff"
| |
− | |
| |
− | | align="right" | <math>r\colon\!</math>
| |
− | | <math>1~0~1~0~1~0~1~0</math>
| |
− | |
| |
− | |-
| |
− | |
| |
− | <math>\begin{matrix}
| |
− | f_{104}
| |
− | \\[4pt]
| |
− | f_{148}
| |
− | \\[4pt]
| |
− | f_{146}
| |
− | \\[4pt]
| |
− | f_{97}
| |
− | \\[4pt]
| |
− | f_{134}
| |
− | \\[4pt]
| |
− | f_{73}
| |
− | \\[4pt]
| |
− | f_{41}
| |
− | \\[4pt]
| |
− | f_{22}
| |
− | \end{matrix}</math>
| |
− | |
| |
− | <math>\begin{matrix}
| |
− | f_{01101000}
| |
− | \\[4pt]
| |
− | f_{10010100}
| |
− | \\[4pt]
| |
− | f_{10010010}
| |
− | \\[4pt]
| |
− | f_{01100001}
| |
− | \\[4pt]
| |
− | f_{10000110}
| |
− | \\[4pt]
| |
− | f_{01001001}
| |
− | \\[4pt]
| |
− | f_{00101001}
| |
− | \\[4pt]
| |
− | f_{00010110}
| |
− | \end{matrix}</math>
| |
− | |
| |
− | <math>\begin{matrix}
| |
− | 0~1~1~0~1~0~0~0
| |
− | \\[4pt]
| |
− | 1~0~0~1~0~1~0~0
| |
− | \\[4pt]
| |
− | 1~0~0~1~0~0~1~0
| |
− | \\[4pt]
| |
− | 0~1~1~0~0~0~0~1
| |
− | \\[4pt]
| |
− | 1~0~0~0~0~1~1~0
| |
− | \\[4pt]
| |
− | 0~1~0~0~1~0~0~1
| |
− | \\[4pt]
| |
− | 0~0~1~0~1~0~0~1
| |
− | \\[4pt]
| |
− | 0~0~0~1~0~1~1~0
| |
− | \end{matrix}</math>
| |
− | |
| |
− | <math>\begin{matrix}
| |
− | ( p , q , r )
| |
− | \\[4pt]
| |
− | ( p , q , (r))
| |
− | \\[4pt]
| |
− | ( p , (q), r )
| |
− | \\[4pt]
| |
− | ( p , (q), (r))
| |
− | \\[4pt]
| |
− | ((p), q , r )
| |
− | \\[4pt]
| |
− | ((p), q , (r))
| |
− | \\[4pt]
| |
− | ((p), (q), r )
| |
− | \\[4pt]
| |
− | ((p), (q), (r))
| |
− | \end{matrix}</math>
| |
− | |-
| |
− | |
| |
− | <math>\begin{matrix}
| |
− | f_{233}
| |
− | \\[4pt]
| |
− | f_{214}
| |
− | \\[4pt]
| |
− | f_{182}
| |
− | \\[4pt]
| |
− | f_{121}
| |
− | \\[4pt]
| |
− | f_{158}
| |
− | \\[4pt]
| |
− | f_{109}
| |
− | \\[4pt]
| |
− | f_{107}
| |
− | \\[4pt]
| |
− | f_{151}
| |
− | \end{matrix}</math>
| |
− | |
| |
− | <math>\begin{matrix}
| |
− | f_{11101001}
| |
− | \\[4pt]
| |
− | f_{11010110}
| |
− | \\[4pt]
| |
− | f_{10110110}
| |
− | \\[4pt]
| |
− | f_{01111001}
| |
− | \\[4pt]
| |
− | f_{10011110}
| |
− | \\[4pt]
| |
− | f_{01101101}
| |
− | \\[4pt]
| |
− | f_{01101011}
| |
− | \\[4pt]
| |
− | f_{10010111}
| |
− | \end{matrix}</math>
| |
− | |
| |
− | <math>\begin{matrix}
| |
− | 1~1~1~0~1~0~0~1
| |
− | \\[4pt]
| |
− | 1~1~0~1~0~1~1~0
| |
− | \\[4pt]
| |
− | 1~0~1~1~0~1~1~0
| |
− | \\[4pt]
| |
− | 0~1~1~1~1~0~0~1
| |
− | \\[4pt]
| |
− | 1~0~0~1~1~1~1~0
| |
− | \\[4pt]
| |
− | 0~1~1~0~1~1~0~1
| |
− | \\[4pt]
| |
− | 0~1~1~0~1~0~1~1
| |
− | \\[4pt]
| |
− | 1~0~0~1~0~1~1~1
| |
− | \end{matrix}</math>
| |
− | |
| |
− | <math>\begin{matrix}
| |
− | (((p), (q), (r)))
| |
− | \\[4pt]
| |
− | (((p), (q), r ))
| |
− | \\[4pt]
| |
− | (((p), q , (r)))
| |
− | \\[4pt]
| |
− | (((p), q , r ))
| |
− | \\[4pt]
| |
− | (( p , (q), (r)))
| |
− | \\[4pt]
| |
− | (( p , (q), r ))
| |
− | \\[4pt]
| |
− | (( p , q , (r)))
| |
− | \\[4pt]
| |
− | (( p , q , r ))
| |
− | \end{matrix}</math>
| |
| |} | | |} |
| | | |