Line 29: |
Line 29: |
| | | | | |
| | align="right" | <math>p\colon\!</math> | | | align="right" | <math>p\colon\!</math> |
− | | <math>1~1~0~0\!</math> | + | | <math>1~1~0~0</math> |
| | | | | |
| | | | | |
Line 36: |
Line 36: |
| | | | | |
| | align="right" | <math>q\colon\!</math> | | | align="right" | <math>q\colon\!</math> |
− | | <math>1~0~1~0\!</math> | + | | <math>1~0~1~0</math> |
| | | | | |
| | | | | |
Line 259: |
Line 259: |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
− |
| |
− | <br>
| |
− |
| |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:#f0f0ff; font-weight:bold; text-align:center; width:80%"
| |
− | |+ <math>\text{Table 1.}~~\text{Logical Boundaries and Their Complements}</math>
| |
− | | width="20%" | <math>\mathcal{L}_1</math>
| |
− | | width="20%" | <math>\mathcal{L}_2</math>
| |
− | | width="20%" | <math>\mathcal{L}_3</math>
| |
− | | width="20%" | <math>\mathcal{L}_4</math>
| |
− | |-
| |
− | | Decimal
| |
− | | Binary
| |
− | | Sequential
| |
− | | Parenthetical
| |
− | |-
| |
− | |
| |
− | | align="right" | <math>p =\!</math>
| |
− | | 1 1 1 1 0 0 0 0
| |
− | |
| |
− | |-
| |
− | |
| |
− | | align="right" | <math>q =\!</math>
| |
− | | 1 1 0 0 1 1 0 0
| |
− | |
| |
− | |-
| |
− | |
| |
− | | align="right" | <math>r =\!</math>
| |
− | | 1 0 1 0 1 0 1 0
| |
− | |
| |
− | |}
| |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%"
| |
− | |-
| |
− | | width="20%" | <math>f_{104}\!</math>
| |
− | | width="20%" | <math>f_{01101000}\!</math>
| |
− | | width="20%" | 0 1 1 0 1 0 0 0
| |
− | | width="20%" | <math>( p , q , r )\!</math>
| |
− | |-
| |
− | | <math>f_{148}\!</math>
| |
− | | <math>f_{10010100}\!</math>
| |
− | | 1 0 0 1 0 1 0 0
| |
− | | <math>( p , q , (r))\!</math>
| |
− | |-
| |
− | | <math>f_{146}\!</math>
| |
− | | <math>f_{10010010}\!</math>
| |
− | | 1 0 0 1 0 0 1 0
| |
− | | <math>( p , (q), r )\!</math>
| |
− | |-
| |
− | | <math>f_{97}\!</math>
| |
− | | <math>f_{01100001}\!</math>
| |
− | | 0 1 1 0 0 0 0 1
| |
− | | <math>( p , (q), (r))\!</math>
| |
− | |-
| |
− | | <math>f_{134}\!</math>
| |
− | | <math>f_{10000110}\!</math>
| |
− | | 1 0 0 0 0 1 1 0
| |
− | | <math>((p), q , r )\!</math>
| |
− | |-
| |
− | | <math>f_{73}\!</math>
| |
− | | <math>f_{01001001}\!</math>
| |
− | | 0 1 0 0 1 0 0 1
| |
− | | <math>((p), q , (r))\!</math>
| |
− | |-
| |
− | | <math>f_{41}\!</math>
| |
− | | <math>f_{00101001}\!</math>
| |
− | | 0 0 1 0 1 0 0 1
| |
− | | <math>((p), (q), r )\!</math>
| |
− | |-
| |
− | | <math>f_{22}\!</math>
| |
− | | <math>f_{00010110}\!</math>
| |
− | | 0 0 0 1 0 1 1 0
| |
− | | <math>((p), (q), (r))\!</math>
| |
− | |}
| |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%"
| |
− | |-
| |
− | | width="20%" | <math>f_{233}\!</math>
| |
− | | width="20%" | <math>f_{11101001}\!</math>
| |
− | | width="20%" | 1 1 1 0 1 0 0 1
| |
− | | width="20%" | <math>(((p), (q), (r)))\!</math>
| |
− | |-
| |
− | | <math>f_{214}\!</math>
| |
− | | <math>f_{11010110}\!</math>
| |
− | | 1 1 0 1 0 1 1 0
| |
− | | <math>(((p), (q), r ))\!</math>
| |
− | |-
| |
− | | <math>f_{182}\!</math>
| |
− | | <math>f_{10110110}\!</math>
| |
− | | 1 0 1 1 0 1 1 0
| |
− | | <math>(((p), q , (r)))\!</math>
| |
− | |-
| |
− | | <math>f_{121}\!</math>
| |
− | | <math>f_{01111001}\!</math>
| |
− | | 0 1 1 1 1 0 0 1
| |
− | | <math>(((p), q , r ))\!</math>
| |
− | |-
| |
− | | <math>f_{158}\!</math>
| |
− | | <math>f_{10011110}\!</math>
| |
− | | 1 0 0 1 1 1 1 0
| |
− | | <math>(( p , (q), (r)))\!</math>
| |
− | |-
| |
− | | <math>f_{109}\!</math>
| |
− | | <math>f_{01101101}\!</math>
| |
− | | 0 1 1 0 1 1 0 1
| |
− | | <math>(( p , (q), r ))\!</math>
| |
− | |-
| |
− | | <math>f_{107}\!</math>
| |
− | | <math>f_{01101011}\!</math>
| |
− | | 0 1 1 0 1 0 1 1
| |
− | | <math>(( p , q , (r)))\!</math>
| |
− | |-
| |
− | | <math>f_{151}\!</math>
| |
− | | <math>f_{10010111}\!</math>
| |
− | | 1 0 0 1 0 1 1 1
| |
− | | <math>(( p , q , r ))\!</math>
| |
− | |}
| |
− |
| |
− | <br>
| |
− |
| |
− | ==Work Area==
| |
| | | |
| <br> | | <br> |