Line 372: |
Line 372: |
| | 1 0 0 1 0 1 1 1 | | | 1 0 0 1 0 1 1 1 |
| | <math>(( p , q , r ))\!</math> | | | <math>(( p , q , r ))\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ==Work Area== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:#f0f0ff; font-weight:bold; text-align:center; width:80%" |
| + | |+ <math>\text{Table 1.}~~\text{Logical Boundaries and Their Complements}</math> |
| + | | width="20%" | <math>\mathcal{L}_1</math> |
| + | | width="20%" | <math>\mathcal{L}_2</math> |
| + | | width="20%" | <math>\mathcal{L}_3</math> |
| + | | width="20%" | <math>\mathcal{L}_4</math> |
| + | |- |
| + | | Decimal |
| + | | Binary |
| + | | Sequential |
| + | | Parenthetical |
| + | |- |
| + | | |
| + | | align="right" | <math>p =\!</math> |
| + | | 1 1 1 1 0 0 0 0 |
| + | | |
| + | |- |
| + | | |
| + | | align="right" | <math>q =\!</math> |
| + | | 1 1 0 0 1 1 0 0 |
| + | | |
| + | |- |
| + | | |
| + | | align="right" | <math>r =\!</math> |
| + | | 1 0 1 0 1 0 1 0 |
| + | | |
| + | |} |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%" |
| + | |- |
| + | | width="20%" | <math>f_{104}\!</math> |
| + | | width="20%" | <math>f_{01101000}\!</math> |
| + | | width="20%" | 0 1 1 0 1 0 0 0 |
| + | | width="20%" | <math>( p , q , r )\!</math> |
| + | |- |
| + | | <math>f_{148}\!</math> |
| + | | <math>f_{10010100}\!</math> |
| + | | 1 0 0 1 0 1 0 0 |
| + | | <math>( p , q , (r))\!</math> |
| + | |- |
| + | | <math>f_{146}\!</math> |
| + | | <math>f_{10010010}\!</math> |
| + | | 1 0 0 1 0 0 1 0 |
| + | | <math>( p , (q), r )\!</math> |
| + | |- |
| + | | <math>f_{97}\!</math> |
| + | | <math>f_{01100001}\!</math> |
| + | | 0 1 1 0 0 0 0 1 |
| + | | <math>( p , (q), (r))\!</math> |
| + | |- |
| + | | <math>f_{134}\!</math> |
| + | | <math>f_{10000110}\!</math> |
| + | | 1 0 0 0 0 1 1 0 |
| + | | <math>((p), q , r )\!</math> |
| + | |- |
| + | | <math>f_{73}\!</math> |
| + | | <math>f_{01001001}\!</math> |
| + | | 0 1 0 0 1 0 0 1 |
| + | | <math>((p), q , (r))\!</math> |
| + | |- |
| + | | <math>f_{41}\!</math> |
| + | | <math>f_{00101001}\!</math> |
| + | | 0 0 1 0 1 0 0 1 |
| + | | <math>((p), (q), r )\!</math> |
| + | |- |
| + | | <math>f_{22}\!</math> |
| + | | <math>f_{00010110}\!</math> |
| + | | 0 0 0 1 0 1 1 0 |
| + | | <math>((p), (q), (r))\!</math> |
| + | |} |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%" |
| + | |- |
| + | | width="20%" | <math>f_{233}\!</math> |
| + | | width="20%" | <math>f_{11101001}\!</math> |
| + | | width="20%" | 1 1 1 0 1 0 0 1 |
| + | | width="20%" | <math>(((p), (q), (r)))\!</math> |
| + | |- |
| + | | <math>f_{214}\!</math> |
| + | | <math>f_{11010110}\!</math> |
| + | | 1 1 0 1 0 1 1 0 |
| + | | <math>(((p), (q), r ))\!</math> |
| + | |- |
| + | | <math>f_{182}\!</math> |
| + | | <math>f_{10110110}\!</math> |
| + | | 1 0 1 1 0 1 1 0 |
| + | | <math>(((p), q , (r)))\!</math> |
| + | |- |
| + | | <math>f_{121}\!</math> |
| + | | <math>f_{01111001}\!</math> |
| + | | 0 1 1 1 1 0 0 1 |
| + | | <math>(((p), q , r ))\!</math> |
| + | |- |
| + | | <math>f_{158}\!</math> |
| + | | <math>f_{10011110}\!</math> |
| + | | 1 0 0 1 1 1 1 0 |
| + | | <math>(( p , (q), (r)))\!</math> |
| + | |- |
| + | | <math>f_{109}\!</math> |
| + | | <math>f_{01101101}\!</math> |
| + | | 0 1 1 0 1 1 0 1 |
| + | | <math>(( p , (q), r ))\!</math> |
| + | |- |
| + | | <math>f_{107}\!</math> |
| + | | <math>f_{01101011}\!</math> |
| + | | 0 1 1 0 1 0 1 1 |
| + | | <math>(( p , q , (r)))\!</math> |
| + | |- |
| + | | <math>f_{151}\!</math> |
| + | | <math>f_{10010111}\!</math> |
| + | | 1 0 0 1 0 1 1 1 |
| + | | <math>(( p , q , r ))\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ <math>\text{Table A1.}~~\text{Propositional Forms on Two Variables}</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_1</math></p> |
| + | <p><math>\text{Decimal}</math></p> |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_2</math></p> |
| + | <p><math>\text{Binary}</math></p> |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_3</math></p> |
| + | <p><math>\text{Vector}</math></p> |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_4</math></p> |
| + | <p><math>\text{Cactus}</math></p> |
| + | | width="25%" | |
| + | <p><math>\mathcal{L}_5</math></p> |
| + | <p><math>\text{English}</math></p> |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_6</math></p> |
| + | <p><math>\text{Ordinary}</math></p> |
| + | |- style="background:#f0f0ff" |
| + | | |
| + | | align="right" | <math>p\colon\!</math> |
| + | | <math>1~1~0~0\!</math> |
| + | | |
| + | | |
| + | | |
| + | |- style="background:#f0f0ff" |
| + | | |
| + | | align="right" | <math>q\colon\!</math> |
| + | | <math>1~0~1~0\!</math> |
| + | | |
| + | | |
| + | | |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_0 |
| + | \\[4pt] |
| + | f_1 |
| + | \\[4pt] |
| + | f_2 |
| + | \\[4pt] |
| + | f_3 |
| + | \\[4pt] |
| + | f_4 |
| + | \\[4pt] |
| + | f_5 |
| + | \\[4pt] |
| + | f_6 |
| + | \\[4pt] |
| + | f_7 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{0000} |
| + | \\[4pt] |
| + | f_{0001} |
| + | \\[4pt] |
| + | f_{0010} |
| + | \\[4pt] |
| + | f_{0011} |
| + | \\[4pt] |
| + | f_{0100} |
| + | \\[4pt] |
| + | f_{0101} |
| + | \\[4pt] |
| + | f_{0110} |
| + | \\[4pt] |
| + | f_{0111} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0~0~0~0 |
| + | \\[4pt] |
| + | 0~0~0~1 |
| + | \\[4pt] |
| + | 0~0~1~0 |
| + | \\[4pt] |
| + | 0~0~1~1 |
| + | \\[4pt] |
| + | 0~1~0~0 |
| + | \\[4pt] |
| + | 0~1~0~1 |
| + | \\[4pt] |
| + | 0~1~1~0 |
| + | \\[4pt] |
| + | 0~1~1~1 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \\[4pt] |
| + | (p)~~~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \\[4pt] |
| + | ~~~(q) |
| + | \\[4pt] |
| + | (p,~q) |
| + | \\[4pt] |
| + | (p~~q) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \text{false} |
| + | \\[4pt] |
| + | \text{neither}~ p ~\text{nor}~ q |
| + | \\[4pt] |
| + | q ~\text{without}~ p |
| + | \\[4pt] |
| + | \text{not}~ p |
| + | \\[4pt] |
| + | p ~\text{without}~ q |
| + | \\[4pt] |
| + | \text{not}~ q |
| + | \\[4pt] |
| + | p ~\text{not equal to}~ q |
| + | \\[4pt] |
| + | \text{not both}~ p ~\text{and}~ q |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0 |
| + | \\[4pt] |
| + | \lnot p \land \lnot q |
| + | \\[4pt] |
| + | \lnot p \land q |
| + | \\[4pt] |
| + | \lnot p |
| + | \\[4pt] |
| + | p \land \lnot q |
| + | \\[4pt] |
| + | \lnot q |
| + | \\[4pt] |
| + | p \ne q |
| + | \\[4pt] |
| + | \lnot p \lor \lnot q |
| + | \end{matrix}</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_8 |
| + | \\[4pt] |
| + | f_9 |
| + | \\[4pt] |
| + | f_{10} |
| + | \\[4pt] |
| + | f_{11} |
| + | \\[4pt] |
| + | f_{12} |
| + | \\[4pt] |
| + | f_{13} |
| + | \\[4pt] |
| + | f_{14} |
| + | \\[4pt] |
| + | f_{15} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{1000} |
| + | \\[4pt] |
| + | f_{1001} |
| + | \\[4pt] |
| + | f_{1010} |
| + | \\[4pt] |
| + | f_{1011} |
| + | \\[4pt] |
| + | f_{1100} |
| + | \\[4pt] |
| + | f_{1101} |
| + | \\[4pt] |
| + | f_{1110} |
| + | \\[4pt] |
| + | f_{1111} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 1~0~0~0 |
| + | \\[4pt] |
| + | 1~0~0~1 |
| + | \\[4pt] |
| + | 1~0~1~0 |
| + | \\[4pt] |
| + | 1~0~1~1 |
| + | \\[4pt] |
| + | 1~1~0~0 |
| + | \\[4pt] |
| + | 1~1~0~1 |
| + | \\[4pt] |
| + | 1~1~1~0 |
| + | \\[4pt] |
| + | 1~1~1~1 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~~p~~q~~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \\[4pt] |
| + | ~~~~~q~~ |
| + | \\[4pt] |
| + | ~(p~(q)) |
| + | \\[4pt] |
| + | ~~p~~~~~ |
| + | \\[4pt] |
| + | ((p)~q)~ |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \\[4pt] |
| + | ((~)) |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | p ~\text{and}~ q |
| + | \\[4pt] |
| + | p ~\text{equal to}~ q |
| + | \\[4pt] |
| + | q |
| + | \\[4pt] |
| + | \text{not}~ p ~\text{without}~ q |
| + | \\[4pt] |
| + | p |
| + | \\[4pt] |
| + | \text{not}~ q ~\text{without}~ p |
| + | \\[4pt] |
| + | p ~\text{or}~ q |
| + | \\[4pt] |
| + | \text{true} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | p \land q |
| + | \\[4pt] |
| + | p = q |
| + | \\[4pt] |
| + | q |
| + | \\[4pt] |
| + | p \Rightarrow q |
| + | \\[4pt] |
| + | p |
| + | \\[4pt] |
| + | p \Leftarrow q |
| + | \\[4pt] |
| + | p \lor q |
| + | \\[4pt] |
| + | 1 |
| + | \end{matrix}</math> |
| |} | | |} |
| | | |