Line 258: |
Line 258: |
| 1 | | 1 |
| \end{matrix}</math> | | \end{matrix}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:#f0f0ff; font-weight:bold; text-align:center; width:80%" |
| + | |+ <math>\text{Table 1.}~~\text{Logical Boundaries and Their Complements}</math> |
| + | | width="20%" | <math>\mathcal{L}_1</math> |
| + | | width="20%" | <math>\mathcal{L}_2</math> |
| + | | width="20%" | <math>\mathcal{L}_3</math> |
| + | | width="20%" | <math>\mathcal{L}_4</math> |
| + | |- |
| + | | Decimal |
| + | | Binary |
| + | | Sequential |
| + | | Parenthetical |
| + | |- |
| + | | |
| + | | align="right" | <math>p =\!</math> |
| + | | 1 1 1 1 0 0 0 0 |
| + | | |
| + | |- |
| + | | |
| + | | align="right" | <math>q =\!</math> |
| + | | 1 1 0 0 1 1 0 0 |
| + | | |
| + | |- |
| + | | |
| + | | align="right" | <math>r =\!</math> |
| + | | 1 0 1 0 1 0 1 0 |
| + | | |
| + | |} |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%" |
| + | |- |
| + | | width="20%" | <math>f_{104}\!</math> |
| + | | width="20%" | <math>f_{01101000}\!</math> |
| + | | width="20%" | 0 1 1 0 1 0 0 0 |
| + | | width="20%" | <math>( p , q , r )\!</math> |
| + | |- |
| + | | <math>f_{148}\!</math> |
| + | | <math>f_{10010100}\!</math> |
| + | | 1 0 0 1 0 1 0 0 |
| + | | <math>( p , q , (r))\!</math> |
| + | |- |
| + | | <math>f_{146}\!</math> |
| + | | <math>f_{10010010}\!</math> |
| + | | 1 0 0 1 0 0 1 0 |
| + | | <math>( p , (q), r )\!</math> |
| + | |- |
| + | | <math>f_{97}\!</math> |
| + | | <math>f_{01100001}\!</math> |
| + | | 0 1 1 0 0 0 0 1 |
| + | | <math>( p , (q), (r))\!</math> |
| + | |- |
| + | | <math>f_{134}\!</math> |
| + | | <math>f_{10000110}\!</math> |
| + | | 1 0 0 0 0 1 1 0 |
| + | | <math>((p), q , r )\!</math> |
| + | |- |
| + | | <math>f_{73}\!</math> |
| + | | <math>f_{01001001}\!</math> |
| + | | 0 1 0 0 1 0 0 1 |
| + | | <math>((p), q , (r))\!</math> |
| + | |- |
| + | | <math>f_{41}\!</math> |
| + | | <math>f_{00101001}\!</math> |
| + | | 0 0 1 0 1 0 0 1 |
| + | | <math>((p), (q), r )\!</math> |
| + | |- |
| + | | <math>f_{22}\!</math> |
| + | | <math>f_{00010110}\!</math> |
| + | | 0 0 0 1 0 1 1 0 |
| + | | <math>((p), (q), (r))\!</math> |
| + | |} |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%" |
| + | |- |
| + | | width="20%" | <math>f_{233}\!</math> |
| + | | width="20%" | <math>f_{11101001}\!</math> |
| + | | width="20%" | 1 1 1 0 1 0 0 1 |
| + | | width="20%" | <math>(((p), (q), (r)))\!</math> |
| + | |- |
| + | | <math>f_{214}\!</math> |
| + | | <math>f_{11010110}\!</math> |
| + | | 1 1 0 1 0 1 1 0 |
| + | | <math>(((p), (q), r ))\!</math> |
| + | |- |
| + | | <math>f_{182}\!</math> |
| + | | <math>f_{10110110}\!</math> |
| + | | 1 0 1 1 0 1 1 0 |
| + | | <math>(((p), q , (r)))\!</math> |
| + | |- |
| + | | <math>f_{121}\!</math> |
| + | | <math>f_{01111001}\!</math> |
| + | | 0 1 1 1 1 0 0 1 |
| + | | <math>(((p), q , r ))\!</math> |
| + | |- |
| + | | <math>f_{158}\!</math> |
| + | | <math>f_{10011110}\!</math> |
| + | | 1 0 0 1 1 1 1 0 |
| + | | <math>(( p , (q), (r)))\!</math> |
| + | |- |
| + | | <math>f_{109}\!</math> |
| + | | <math>f_{01101101}\!</math> |
| + | | 0 1 1 0 1 1 0 1 |
| + | | <math>(( p , (q), r ))\!</math> |
| + | |- |
| + | | <math>f_{107}\!</math> |
| + | | <math>f_{01101011}\!</math> |
| + | | 0 1 1 0 1 0 1 1 |
| + | | <math>(( p , q , (r)))\!</math> |
| + | |- |
| + | | <math>f_{151}\!</math> |
| + | | <math>f_{10010111}\!</math> |
| + | | 1 0 0 1 0 1 1 1 |
| + | | <math>(( p , q , r ))\!</math> |
| |} | | |} |
| | | |