| Line 46: |
Line 46: |
| | <br> | | <br> |
| | | | |
| − | {| align="center" border="1" cellpadding="6" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%" |
| | |+ <math>\text{Table 1.}~~\text{Syntax and Semantics of a Calculus for Propositional Logic}</math> | | |+ <math>\text{Table 1.}~~\text{Syntax and Semantics of a Calculus for Propositional Logic}</math> |
| | |- style="background:#f0f0ff" | | |- style="background:#f0f0ff" |
| Line 54: |
Line 54: |
| | |- | | |- |
| | | <math>~</math> | | | <math>~</math> |
| − | | <math>\operatorname{True}</math> | + | | <math>\operatorname{true}</math> |
| | | <math>1\!</math> | | | <math>1\!</math> |
| | |- | | |- |
| − | | <math>(~)</math> | + | | <math>\texttt{(~)}</math> |
| − | | <math>\operatorname{False}</math> | + | | <math>\operatorname{false}</math> |
| | | <math>0\!</math> | | | <math>0\!</math> |
| | |- | | |- |
| Line 65: |
Line 65: |
| | | <math>a\!</math> | | | <math>a\!</math> |
| | |- | | |- |
| − | | <math>(a)\!</math> | + | | <math>\texttt{(} a \texttt{)}</math> |
| − | | <math>\operatorname{Not}\ a</math> | + | | <math>\operatorname{not}~ a</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | a' \\ | + | a^\prime |
| − | \tilde{a} \\ | + | \\ |
| − | \lnot a \\ | + | \tilde{a} |
| | + | \\ |
| | + | \lnot a |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |- | | |- |
| − | | <math>a\ b\ c</math> | + | | <math>a ~ b ~ c</math> |
| − | | <math>a\ \operatorname{and}\ b\ \operatorname{and}\ c</math> | + | | <math>a ~\operatorname{and}~ b ~\operatorname{and}~ c</math> |
| | | <math>a \land b \land c</math> | | | <math>a \land b \land c</math> |
| | |- | | |- |
| − | | <math>((a)(b)(c))\!</math> | + | | <math>\texttt{((} a \texttt{)(} b \texttt{)(} c \texttt{))}</math> |
| − | | <math>a\ \operatorname{or}\ b\ \operatorname{or}\ c</math> | + | | <math>a ~\operatorname{or}~ b ~\operatorname{or}~ c</math> |
| | | <math>a \lor b \lor c</math> | | | <math>a \lor b \lor c</math> |
| | |- | | |- |
| − | | <math>(a\ (b))\!</math> | + | | <math>\texttt{(} a \texttt{(} b \texttt{))}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | a\ \operatorname{implies}\ b \\ | + | a ~\operatorname{implies}~ b |
| − | \operatorname{If}\ a\ \operatorname{then}\ b \\ | + | \\ |
| | + | \operatorname{if}~ a ~\operatorname{then}~ b |
| | \end{matrix}</math> | | \end{matrix}</math> |
| − | | <math>a \Rightarrow b\!</math> | + | | <math>a \Rightarrow b</math> |
| | |- | | |- |
| − | | <math>(a, b)\!</math> | + | | <math>\texttt{(} a, b \texttt{)}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | a\ \operatorname{not~equal~to}\ b \\ | + | a ~\operatorname{not~equal~to}~ b |
| − | a\ \operatorname{exclusive~or}\ b \\ | + | \\ |
| | + | a ~\operatorname{exclusive~or}~ b |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | a \neq b \\ | + | a \neq b |
| − | a + b \\ | + | \\ |
| | + | a + b |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |- | | |- |
| − | | <math>((a, b))\!</math> | + | | <math>\texttt{((} a, b \texttt{))}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | a\ \operatorname{is~equal~to}\ b \\ | + | a ~\operatorname{is~equal~to}~ b |
| − | a\ \operatorname{if~and~only~if}\ b \\ | + | \\ |
| | + | a ~\operatorname{if~and~only~if}~ b |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | a = b \\ | + | a = b |
| − | a \Leftrightarrow b \\ | + | \\ |
| | + | a \Leftrightarrow b |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |- | | |- |
| − | | <math>(a, b, c)\!</math> | + | | <math>\texttt{(} a, b, c \texttt{)}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | \operatorname{Just~one~of} \\ | + | \operatorname{just~one~of} |
| − | a, b, c \\ | + | \\ |
| − | \operatorname{is~false}. \\ | + | a, b, c |
| | + | \\ |
| | + | \operatorname{is~false}. |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | a'b~c~ & \lor \\ | + | a'b~c~ & \lor |
| − | a~b'c~ & \lor \\ | + | \\ |
| − | a~b~c' & \\ | + | a~b'c~ & \lor |
| | + | \\ |
| | + | a~b~c' & |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |- | | |- |
| − | | <math>((a),(b),(c))\!</math> | + | | <math>\texttt{((} a \texttt{),(} b \texttt{),(} c \texttt{))}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | \operatorname{Just~one~of} \\ | + | \operatorname{just~one~of} |
| − | a, b, c \\ | + | \\ |
| − | \operatorname{is~true}. \\ | + | a, b, c |
| − | & \\
| + | \\ |
| − | \operatorname{Partition~all} \\ | + | \operatorname{is~true}. |
| − | \operatorname{into}\ a, b, c. \\ | + | \\[6pt] |
| | + | \operatorname{partition~all} |
| | + | \\ |
| | + | \operatorname{into}~ a, b, c. |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | a~b'c' & \lor \\ | + | a~b'c' & \lor |
| − | a'b~c' & \lor \\ | + | \\ |
| − | a'b'c~ & \\ | + | a'b~c' & \lor |
| | + | \\ |
| | + | a'b'c~ & |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |- | | |- |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | ((a, b), c) \\ | + | \texttt{((} a, b \texttt{)}, c \texttt{)} |
| − | & \\
| + | \\[6pt] |
| − | (a, (b, c)) \\ | + | \texttt{(} a, \texttt{(} b, c \texttt{))} |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | \operatorname{Oddly~many~of} \\ | + | \operatorname{oddly~many~of} |
| − | a, b, c \\ | + | \\ |
| − | \operatorname{are~true}. \\ | + | a, b, c |
| | + | \\ |
| | + | \operatorname{are~true}. |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| Line 161: |
Line 179: |
| | <br> | | <br> |
| | <p><math>\begin{matrix} | | <p><math>\begin{matrix} |
| − | a~b~c~ & \lor \\ | + | a~b~c~ & \lor |
| − | a~b'c' & \lor \\ | + | \\ |
| − | a'b~c' & \lor \\ | + | a~b'c' & \lor |
| − | a'b'c~ & \\ | + | \\ |
| | + | a'b~c' & \lor |
| | + | \\ |
| | + | a'b'c~ & |
| | \end{matrix}</math></p> | | \end{matrix}</math></p> |
| | |- | | |- |
| − | | <math>(x, (a),(b),(c))\!</math> | + | | <math>\texttt{(} x, \texttt{(} a \texttt{),(} b \texttt{),(} c \texttt{))}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | \operatorname{Partition}\ x \\ | + | \operatorname{partition}~ x |
| − | \operatorname{into}\ a, b, c. \\ | + | \\ |
| − | & \\
| + | \operatorname{into}~ a, b, c. |
| − | \operatorname{Genus}\ x\ \operatorname{comprises} \\ | + | \\[6pt] |
| − | \operatorname{species}\ a, b, c. \\ | + | \operatorname{genus}~ x ~\operatorname{comprises} |
| | + | \\ |
| | + | \operatorname{species}~ a, b, c. |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | x'a'b'c' & \lor \\ | + | x'a'b'c' & \lor |
| − | x~a~b'c' & \lor \\ | + | \\ |
| − | x~a'b~c' & \lor \\ | + | x~a~b'c' & \lor |
| − | x~a'b'c~ & \\ | + | \\ |
| | + | x~a'b~c' & \lor |
| | + | \\ |
| | + | x~a'b'c~ & |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |} | | |} |