Line 3,026: |
Line 3,026: |
| To construct the regular representations of <math>S_3,\!</math> we begin with the data of its operation table: | | To construct the regular representations of <math>S_3,\!</math> we begin with the data of its operation table: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellpadding="10" style="text-align:center" |
− | | align="center" |
| + | | <math>\text{Symmetric Group}~ S_3</math> |
− | <pre> | + | |- |
− | Symmetric Group S_3 | + | | [[Image:Symmetric Group S(3).jpg|500px]] |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | ^ |
| |
− | | e / \ e |
| |
− | | / \ | | |
− | | / e \ | | |
− | | f / \ / \ f |
| |
− | | / \ / \ |
| |
− | | / f \ f \ |
| |
− | | g / \ / \ / \ g |
| |
− | | / \ / \ / \ |
| |
− | | / g \ g \ g \ |
| |
− | | h / \ / \ / \ / \ h |
| |
− | | / \ / \ / \ / \ |
| |
− | | / h \ e \ e \ h \ |
| |
− | | i / \ / \ / \ / \ / \ i |
| |
− | | / \ / \ / \ / \ / \ |
| |
− | | / i \ i \ f \ j \ i \ |
| |
− | | j / \ / \ / \ / \ / \ / \ j |
| |
− | | / \ / \ / \ / \ / \ / \ |
| |
− | | ( j \ j \ j \ i \ h \ j ) |
| |
− | | \ / \ / \ / \ / \ / \ / |
| |
− | | \ / \ / \ / \ / \ / \ / |
| |
− | | \ h \ h \ e \ j \ i / |
| |
− | | \ / \ / \ / \ / \ / |
| |
− | | \ / \ / \ / \ / \ / |
| |
− | | \ i \ g \ f \ h / |
| |
− | | \ / \ / \ / \ / |
| |
− | | \ / \ / \ / \ / |
| |
− | | \ f \ e \ g / |
| |
− | | \ / \ / \ / |
| |
− | | \ / \ / \ / |
| |
− | | \ g \ f / |
| |
− | | \ / \ / |
| |
− | | \ / \ / |
| |
− | | \ e / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | v |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
| |} | | |} |
| | | |
Line 3,080: |
Line 3,038: |
| Since we have a function of the type <math>L : G \times G \to G,</math> we can define a couple of substitution operators: | | Since we have a function of the type <math>L : G \times G \to G,</math> we can define a couple of substitution operators: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellpadding="10" width="90%" |
| | valign="top" | 1. | | | valign="top" | 1. |
| | <math>\operatorname{Sub}(x, (\underline{~~}, y))</math> puts any specified <math>x\!</math> into the empty slot of the rheme <math>(\underline{~~}, y),</math> with the effect of producing the saturated rheme <math>(x, y)\!</math> that evaluates to <math>xy.\!</math> | | | <math>\operatorname{Sub}(x, (\underline{~~}, y))</math> puts any specified <math>x\!</math> into the empty slot of the rheme <math>(\underline{~~}, y),</math> with the effect of producing the saturated rheme <math>(x, y)\!</math> that evaluates to <math>xy.\!</math> |
Line 3,090: |
Line 3,048: |
| In (1) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(\underline{~~}, y),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(\underline{~~}, y)</math> into <math>xy,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : xy) ~|~ y \in G \}.</math> The pairs <math>(y : xy)\!</math> can be found by picking an <math>x\!</math> from the left margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the right margin. This produces the ''regular ante-representation'' of <math>S_3,\!</math> like so: | | In (1) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(\underline{~~}, y),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(\underline{~~}, y)</math> into <math>xy,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : xy) ~|~ y \in G \}.</math> The pairs <math>(y : xy)\!</math> can be found by picking an <math>x\!</math> from the left margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the right margin. This produces the ''regular ante-representation'' of <math>S_3,\!</math> like so: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellpadding="10" style="text-align:center" |
− | | align="center" |
| + | | |
| <math>\begin{array}{*{13}{c}} | | <math>\begin{array}{*{13}{c}} |
| \operatorname{e} | | \operatorname{e} |
Line 3,145: |
Line 3,103: |
| In (2) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(y, \underline{~~}),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(y, \underline{~~})</math> into <math>yx,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : yx) ~|~ y \in G \}.</math> The pairs <math>(y : yx)\!</math> can be found by picking an <math>x\!</math> on the right margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the left margin. This produces the ''regular post-representation'' of <math>S_3,\!</math> like so: | | In (2) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(y, \underline{~~}),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(y, \underline{~~})</math> into <math>yx,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : yx) ~|~ y \in G \}.</math> The pairs <math>(y : yx)\!</math> can be found by picking an <math>x\!</math> on the right margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the left margin. This produces the ''regular post-representation'' of <math>S_3,\!</math> like so: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellpadding="10" style="text-align:center" |
− | | align="center" |
| + | | |
| <math>\begin{array}{*{13}{c}} | | <math>\begin{array}{*{13}{c}} |
| \operatorname{e} | | \operatorname{e} |