Changes

MyWikiBiz, Author Your Legacy — Tuesday November 05, 2024
Jump to navigationJump to search
→‎Note 19: convert graphics
Line 3,026: Line 3,026:  
To construct the regular representations of <math>S_3,\!</math> we begin with the data of its operation table:
 
To construct the regular representations of <math>S_3,\!</math> we begin with the data of its operation table:
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellpadding="10" style="text-align:center"
| align="center" |
+
| <math>\text{Symmetric Group}~ S_3</math>
<pre>
+
|-
Symmetric Group S_3
+
| [[Image:Symmetric Group S(3).jpg|500px]]
o-------------------------------------------------o
  −
|                                                |
  −
|                        ^                        |
  −
|                    e / \ e                    |
  −
|                     /  \                      |
  −
|                     /  e  \                    |
  −
|                  f / \  / \ f                  |
  −
|                  /  \ /  \                  |
  −
|                  /  f  \  f  \                  |
  −
|              g / \  / \  / \ g              |
  −
|                /  \ /  \ /  \                |
  −
|              /  g  \  g  \  g  \              |
  −
|            h / \  / \  / \  / \ h            |
  −
|            /  \ /  \ /  \ /  \            |
  −
|            /  h  \  e  \  e  \  h  \            |
  −
|        i / \  / \  / \  / \  / \ i        |
  −
|          /  \ /  \ /  \ /  \ /  \          |
  −
|        /  i  \  i  \  f  \  j  \  i  \        |
  −
|      j / \  / \  / \  / \  / \  / \ j      |
  −
|      /  \ /  \ /  \ /  \ /  \ /  \      |
  −
|      ( j  \  j  \  j  \  i  \  h  \  j  )     |
  −
|      \  / \  / \  / \  / \  / \  /      |
  −
|        \ /  \ /  \ /  \ /  \ /  \ /        |
  −
|        \  h  \  h  \  e  \  j  \  i  /        |
  −
|          \  / \  / \  / \  / \  /          |
  −
|          \ /  \ /  \ /  \ /  \ /          |
  −
|            \  i  \  g  \  f  \  h  /            |
  −
|            \  / \  / \  / \  /            |
  −
|              \ /  \ /  \ /  \ /              |
  −
|              \  f  \  e  \  g  /              |
  −
|                \  / \  / \  /                |
  −
|                \ /  \ /  \ /                |
  −
|                  \  g  \  f  /                  |
  −
|                  \  / \  /                  |
  −
|                    \ /  \ /                    |
  −
|                    \  e  /                    |
  −
|                      \  /                      |
  −
|                      \ /                      |
  −
|                        v                        |
  −
|                                                |
  −
o-------------------------------------------------o
  −
</pre>
   
|}
 
|}
   Line 3,080: Line 3,038:  
Since we have a function of the type <math>L : G \times G \to G,</math> we can define a couple of substitution operators:
 
Since we have a function of the type <math>L : G \times G \to G,</math> we can define a couple of substitution operators:
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellpadding="10" width="90%"
 
| valign="top" | 1.
 
| valign="top" | 1.
 
| <math>\operatorname{Sub}(x, (\underline{~~}, y))</math> puts any specified <math>x\!</math> into the empty slot of the rheme <math>(\underline{~~}, y),</math> with the effect of producing the saturated rheme <math>(x, y)\!</math> that evaluates to <math>xy.\!</math>
 
| <math>\operatorname{Sub}(x, (\underline{~~}, y))</math> puts any specified <math>x\!</math> into the empty slot of the rheme <math>(\underline{~~}, y),</math> with the effect of producing the saturated rheme <math>(x, y)\!</math> that evaluates to <math>xy.\!</math>
Line 3,090: Line 3,048:  
In (1) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(\underline{~~}, y),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(\underline{~~}, y)</math> into <math>xy,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : xy) ~|~ y \in G \}.</math>  The pairs <math>(y : xy)\!</math> can be found by picking an <math>x\!</math> from the left margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the right margin.  This produces the ''regular ante-representation'' of <math>S_3,\!</math> like so:
 
In (1) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(\underline{~~}, y),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(\underline{~~}, y)</math> into <math>xy,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : xy) ~|~ y \in G \}.</math>  The pairs <math>(y : xy)\!</math> can be found by picking an <math>x\!</math> from the left margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the right margin.  This produces the ''regular ante-representation'' of <math>S_3,\!</math> like so:
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellpadding="10" style="text-align:center"
| align="center" |
+
|
 
<math>\begin{array}{*{13}{c}}
 
<math>\begin{array}{*{13}{c}}
 
\operatorname{e}
 
\operatorname{e}
Line 3,145: Line 3,103:  
In (2) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(y, \underline{~~}),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(y, \underline{~~})</math> into <math>yx,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : yx) ~|~ y \in G \}.</math>  The pairs <math>(y : yx)\!</math> can be found by picking an <math>x\!</math> on the right margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the left margin.  This produces the ''regular post-representation'' of <math>S_3,\!</math> like so:
 
In (2) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(y, \underline{~~}),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(y, \underline{~~})</math> into <math>yx,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : yx) ~|~ y \in G \}.</math>  The pairs <math>(y : yx)\!</math> can be found by picking an <math>x\!</math> on the right margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the left margin.  This produces the ''regular post-representation'' of <math>S_3,\!</math> like so:
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellpadding="10" style="text-align:center"
| align="center" |
+
|
 
<math>\begin{array}{*{13}{c}}
 
<math>\begin{array}{*{13}{c}}
 
\operatorname{e}
 
\operatorname{e}
12,080

edits

Navigation menu