Line 3,026:
Line 3,026:
To construct the regular representations of <math>S_3,\!</math> we begin with the data of its operation table:
To construct the regular representations of <math>S_3,\!</math> we begin with the data of its operation table:
−
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellpadding="10" style="text-align:center"
−
| align="center" |
+
| <math>\text{Symmetric Group}~ S_3</math>
−
<pre>
+
|-
−
Symmetric Group S_3
+
| [[Image:Symmetric Group S(3).jpg|500px]]
−
o-------------------------------------------------o
−
| |
−
| ^ |
−
| e / \ e |
−
| / \ |
−
| / e \ |
−
| f / \ / \ f |
−
| / \ / \ |
−
| / f \ f \ |
−
| g / \ / \ / \ g |
−
| / \ / \ / \ |
−
| / g \ g \ g \ |
−
| h / \ / \ / \ / \ h |
−
| / \ / \ / \ / \ |
−
| / h \ e \ e \ h \ |
−
| i / \ / \ / \ / \ / \ i |
−
| / \ / \ / \ / \ / \ |
−
| / i \ i \ f \ j \ i \ |
−
| j / \ / \ / \ / \ / \ / \ j |
−
| / \ / \ / \ / \ / \ / \ |
−
| ( j \ j \ j \ i \ h \ j ) |
−
| \ / \ / \ / \ / \ / \ / |
−
| \ / \ / \ / \ / \ / \ / |
−
| \ h \ h \ e \ j \ i / |
−
| \ / \ / \ / \ / \ / |
−
| \ / \ / \ / \ / \ / |
−
| \ i \ g \ f \ h / |
−
| \ / \ / \ / \ / |
−
| \ / \ / \ / \ / |
−
| \ f \ e \ g / |
−
| \ / \ / \ / |
−
| \ / \ / \ / |
−
| \ g \ f / |
−
| \ / \ / |
−
| \ / \ / |
−
| \ e / |
−
| \ / |
−
| \ / |
−
| v |
−
| |
−
o-------------------------------------------------o
−
</pre>
|}
|}
Line 3,080:
Line 3,038:
Since we have a function of the type <math>L : G \times G \to G,</math> we can define a couple of substitution operators:
Since we have a function of the type <math>L : G \times G \to G,</math> we can define a couple of substitution operators:
−
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellpadding="10" width="90%"
| valign="top" | 1.
| valign="top" | 1.
| <math>\operatorname{Sub}(x, (\underline{~~}, y))</math> puts any specified <math>x\!</math> into the empty slot of the rheme <math>(\underline{~~}, y),</math> with the effect of producing the saturated rheme <math>(x, y)\!</math> that evaluates to <math>xy.\!</math>
| <math>\operatorname{Sub}(x, (\underline{~~}, y))</math> puts any specified <math>x\!</math> into the empty slot of the rheme <math>(\underline{~~}, y),</math> with the effect of producing the saturated rheme <math>(x, y)\!</math> that evaluates to <math>xy.\!</math>
Line 3,090:
Line 3,048:
In (1) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(\underline{~~}, y),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(\underline{~~}, y)</math> into <math>xy,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : xy) ~|~ y \in G \}.</math> The pairs <math>(y : xy)\!</math> can be found by picking an <math>x\!</math> from the left margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the right margin. This produces the ''regular ante-representation'' of <math>S_3,\!</math> like so:
In (1) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(\underline{~~}, y),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(\underline{~~}, y)</math> into <math>xy,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : xy) ~|~ y \in G \}.</math> The pairs <math>(y : xy)\!</math> can be found by picking an <math>x\!</math> from the left margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the right margin. This produces the ''regular ante-representation'' of <math>S_3,\!</math> like so:
−
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellpadding="10" style="text-align:center"
−
| align="center" |
+
|
<math>\begin{array}{*{13}{c}}
<math>\begin{array}{*{13}{c}}
\operatorname{e}
\operatorname{e}
Line 3,145:
Line 3,103:
In (2) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(y, \underline{~~}),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(y, \underline{~~})</math> into <math>yx,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : yx) ~|~ y \in G \}.</math> The pairs <math>(y : yx)\!</math> can be found by picking an <math>x\!</math> on the right margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the left margin. This produces the ''regular post-representation'' of <math>S_3,\!</math> like so:
In (2) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(y, \underline{~~}),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(y, \underline{~~})</math> into <math>yx,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : yx) ~|~ y \in G \}.</math> The pairs <math>(y : yx)\!</math> can be found by picking an <math>x\!</math> on the right margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the left margin. This produces the ''regular post-representation'' of <math>S_3,\!</math> like so:
−
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellpadding="10" style="text-align:center"
−
| align="center" |
+
|
<math>\begin{array}{*{13}{c}}
<math>\begin{array}{*{13}{c}}
\operatorname{e}
\operatorname{e}