Line 265: |
Line 265: |
| In the example <math>f(p, q) = pq,\!</math> the value of the difference proposition <math>\operatorname{D}f_x</math> at each of the four points in <math>x \in X\!</math> may be computed in graphical fashion as shown below: | | In the example <math>f(p, q) = pq,\!</math> the value of the difference proposition <math>\operatorname{D}f_x</math> at each of the four points in <math>x \in X\!</math> may be computed in graphical fashion as shown below: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellspacing="20" |
− | | align="center" |
| + | | [[Image:Cactus Graph Df = ((P,dP)(Q,dQ),PQ).jpg|500px]] |
− | <pre>
| |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | p dp q dq |
| |
− | | o---o o---o |
| |
− | | \ | | / |
| |
− | | \ | | / |
| |
− | | \| |/ p q |
| |
− | | o=o-----------o |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | | Df = ((p, dp)(q, dq), pq) | | |
− | o-------------------------------------------------o
| |
− | </pre>
| |
| |- | | |- |
− | | align="center" | | + | | [[Image:Cactus Graph Df@PQ = ((dP)(dQ)).jpg|500px]] |
− | <pre>
| |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | dp dq |
| |
− | | o---o o---o |
| |
− | | \ | | / |
| |
− | | \ | | / |
| |
− | | \| |/ |
| |
− | | o=o-----------o |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | | Df|pq = ((dp) (dq)) |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
| |- | | |- |
− | | align="center" | | + | | [[Image:Cactus Graph Df@P(Q) = (dP)dQ.jpg|500px]] |
− | <pre>
| |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | o |
| |
− | | dp | dq |
| |
− | | o---o o---o |
| |
− | | \ | | / |
| |
− | | \ | | / o |
| |
− | | \| |/ | |
| |
− | | o=o-----------o |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | | Df|p(q) = (dp) dq |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
| |- | | |- |
− | | align="center" | | + | | [[Image:Cactus Graph Df@(P)Q = dP(dQ).jpg|500px]] |
− | <pre>
| |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | o |
| |
− | | | dp dq |
| |
− | | o---o o---o |
| |
− | | \ | | / |
| |
− | | \ | | / o |
| |
− | | \| |/ | |
| |
− | | o=o-----------o |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | | Df|(p)q = dp (dq) |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
| |- | | |- |
− | | align="center" | | + | | [[Image:Cactus Graph Df@(P)(Q) = dP dQ.jpg|500px]] |
− | <pre>
| |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | o o |
| |
− | | | dp | dq |
| |
− | | o---o o---o |
| |
− | | \ | | / |
| |
− | | \ | | / o o |
| |
− | | \| |/ \ / |
| |
− | | o=o-----------o |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | | Df|(p)(q) = dp dq |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
| |} | | |} |
| | | |
| The easy way to visualize the values of these graphical expressions is just to notice the following equivalents: | | The easy way to visualize the values of these graphical expressions is just to notice the following equivalents: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellspacing="20" |
− | | align="center" |
| + | | [[Image:Cactus Graph Lobe Rule.jpg|500px]] |
− | <pre>
| |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | e |
| |
− | | o-o-o-...-o-o-o | | |
− | | \ / |
| |
− | | \ / | | |
− | | \ / |
| |
− | | \ / e |
| |
− | | \ / o |
| |
− | | \ / | |
| |
− | | @ = @ |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | | (e, , ... , , ) = (e) |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
| |- | | |- |
− | | align="center" | | + | | [[Image:Cactus Graph Spike Rule.jpg|500px]] |
− | <pre>
| |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | o |
| |
− | | e_1 e_2 e_k | |
| |
− | | o---o-...-o---o |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / e_1 ... e_k |
| |
− | | @ = @ |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | | (e_1, ..., e_k, ()) = e_1 ... e_k |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
| |} | | |} |
| | | |
| Laying out the arrows on the augmented venn diagram, one gets a picture of a ''differential vector field''. | | Laying out the arrows on the augmented venn diagram, one gets a picture of a ''differential vector field''. |
| | | |
− | {| align="center" cellpadding="10" | + | {| align="center" cellspacing="20" |
| | [[Image:Venn Diagram PQ Difference Conj.jpg|500px]] | | | [[Image:Venn Diagram PQ Difference Conj.jpg|500px]] |
| |} | | |} |
Line 436: |
Line 293: |
| The Figure shows the points of the extended universe <math>\operatorname{E}X = P \times Q \times \operatorname{d}P \times \operatorname{d}Q</math> that are indicated by the difference map <math>\operatorname{D}f : \operatorname{E}X \to \mathbb{B},</math> namely, the following six points or singular propositions:: | | The Figure shows the points of the extended universe <math>\operatorname{E}X = P \times Q \times \operatorname{d}P \times \operatorname{d}Q</math> that are indicated by the difference map <math>\operatorname{D}f : \operatorname{E}X \to \mathbb{B},</math> namely, the following six points or singular propositions:: |
| | | |
− | {| align="center" cellpadding="6" | + | {| align="center" cellspacing="20" |
| | | | | |
| <math>\begin{array}{rcccc} | | <math>\begin{array}{rcccc} |