Changes

MyWikiBiz, Author Your Legacy — Tuesday November 05, 2024
Jump to navigationJump to search
→‎Note 3: convert graphics
Line 175: Line 175:  
following formula:
 
following formula:
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellspacing="10" style="text-align:center"
| align="center" |
+
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
 
\operatorname{E}f(p, q, \operatorname{d}p, \operatorname{d}q)
 
\operatorname{E}f(p, q, \operatorname{d}p, \operatorname{d}q)
Line 188: Line 188:  
In the example <math>f(p, q) = pq,\!</math> the enlargement <math>\operatorname{E}f</math> is computed as follows:
 
In the example <math>f(p, q) = pq,\!</math> the enlargement <math>\operatorname{E}f</math> is computed as follows:
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellspacing="10" style="text-align:center"
| align="center" |
+
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
 
\operatorname{E}f(p, q, \operatorname{d}p, \operatorname{d}q)
 
\operatorname{E}f(p, q, \operatorname{d}p, \operatorname{d}q)
Line 198: Line 198:  
\end{matrix}</math>
 
\end{matrix}</math>
 
|-
 
|-
| align="center" |
+
| [[Image:Cactus Graph Ef = (P,dP)(Q,dQ).jpg|500px]]
<pre>
  −
o-------------------------------------------------o
  −
|                                                |
  −
|                  p  dp q  dq                  |
  −
|                  o---o o---o                  |
  −
|                    \  | |  /                    |
  −
|                    \ | | /                    |
  −
|                      \| |/                      |
  −
|                      @=@                      |
  −
|                                                |
  −
o-------------------------------------------------o
  −
| Ef =           (p, dp) (q, dq)                 |
  −
o-------------------------------------------------o
  −
</pre>
   
|}
 
|}
    
Given the proposition <math>f(p, q)\!</math> over <math>X = P \times Q,</math> the ''(first order) difference'' of <math>f\!</math> is the proposition <math>\operatorname{D}f</math> over <math>\operatorname{E}X</math> that is defined by the formula <math>\operatorname{D}f = \operatorname{E}f - f,</math> or, written out in full:
 
Given the proposition <math>f(p, q)\!</math> over <math>X = P \times Q,</math> the ''(first order) difference'' of <math>f\!</math> is the proposition <math>\operatorname{D}f</math> over <math>\operatorname{E}X</math> that is defined by the formula <math>\operatorname{D}f = \operatorname{E}f - f,</math> or, written out in full:
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellspacing="10" style="text-align:center"
| align="center" |
+
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
 
\operatorname{D}f(p, q, \operatorname{d}p, \operatorname{d}q)
 
\operatorname{D}f(p, q, \operatorname{d}p, \operatorname{d}q)
Line 230: Line 216:  
In the example <math>f(p, q) = pq,\!</math> the difference <math>\operatorname{D}f</math> is computed as follows:
 
In the example <math>f(p, q) = pq,\!</math> the difference <math>\operatorname{D}f</math> is computed as follows:
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellspacing="10" style="text-align:center"
| align="center" |
+
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
 
\operatorname{D}f(p, q, \operatorname{d}p, \operatorname{d}q)
 
\operatorname{D}f(p, q, \operatorname{d}p, \operatorname{d}q)
Line 240: Line 226:  
\end{matrix}</math>
 
\end{matrix}</math>
 
|-
 
|-
| align="center" |
+
| [[Image:Cactus Graph Df = ((P,dP)(Q,dQ),PQ).jpg|500px]]
<pre>
  −
o-------------------------------------------------o
  −
|                                                |
  −
|            p  dp q  dq                        |
  −
|            o---o o---o                        |
  −
|              \  | |  /                          |
  −
|              \ | | /                          |
  −
|                \| |/        p q                |
  −
|                o=o-----------o                |
  −
|                  \          /                  |
  −
|                  \        /                  |
  −
|                    \      /                    |
  −
|                    \    /                    |
  −
|                      \  /                      |
  −
|                      \ /                      |
  −
|                        @                        |
  −
|                                                |
  −
o-------------------------------------------------o
  −
| Df =           ((p, dp)(q, dq), pq)             |
  −
o-------------------------------------------------o
  −
</pre>
   
|}
 
|}
    
We did not yet go through the trouble to interpret this (first order) ''difference of conjunction'' fully, but were happy simply to evaluate it with respect to a single location in the universe of discourse, namely, at the point picked out by the singular proposition <math>pq,\!</math> that is, at the place where <math>p = 1\!</math> and <math>q = 1.\!</math>  This evaluation is written in the form <math>\operatorname{D}f|_{pq}</math> or <math>\operatorname{D}f|_{(1, 1)},</math> and we arrived at the locally applicable law that is stated and illustrated as follows:
 
We did not yet go through the trouble to interpret this (first order) ''difference of conjunction'' fully, but were happy simply to evaluate it with respect to a single location in the universe of discourse, namely, at the point picked out by the singular proposition <math>pq,\!</math> that is, at the place where <math>p = 1\!</math> and <math>q = 1.\!</math>  This evaluation is written in the form <math>\operatorname{D}f|_{pq}</math> or <math>\operatorname{D}f|_{(1, 1)},</math> and we arrived at the locally applicable law that is stated and illustrated as follows:
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellspacing="10" style="text-align:center"
| align="center" |
+
|
 
<math>f(p, q) ~=~ pq ~=~ p ~\operatorname{and}~ q \quad \Rightarrow \quad \operatorname{D}f|_{pq} ~=~ \texttt{((} \operatorname{dp} \texttt{)(} \operatorname{d}q \texttt{))} ~=~ \operatorname{d}p ~\operatorname{or}~ \operatorname{d}q</math>
 
<math>f(p, q) ~=~ pq ~=~ p ~\operatorname{and}~ q \quad \Rightarrow \quad \operatorname{D}f|_{pq} ~=~ \texttt{((} \operatorname{dp} \texttt{)(} \operatorname{d}q \texttt{))} ~=~ \operatorname{d}p ~\operatorname{or}~ \operatorname{d}q</math>
 
|-
 
|-
| align="center" |
+
| [[Image:Venn Diagram PQ Difference Conj At Conj.jpg|500px]]
[[Image:Venn Diagram PQ Difference Conj At Conj.jpg|500px]]
   
|-
 
|-
| align="center" |
+
| [[Image:Cactus Graph PQ Difference Conj At Conj.jpg|500px]]
[[Image:Cactus Graph PQ Difference Conj At Conj.jpg|500px]]
   
|}
 
|}
    
The picture shows the analysis of the inclusive disjunction <math>\texttt{((} \operatorname{d}p \texttt{)(} \operatorname{d}q \texttt{))}</math> into the following exclusive disjunction:
 
The picture shows the analysis of the inclusive disjunction <math>\texttt{((} \operatorname{d}p \texttt{)(} \operatorname{d}q \texttt{))}</math> into the following exclusive disjunction:
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellspacing="10" style="text-align:center"
| align="center" |
+
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
 
\operatorname{d}p ~\texttt{(} \operatorname{d}q \texttt{)}
 
\operatorname{d}p ~\texttt{(} \operatorname{d}q \texttt{)}
12,080

edits

Navigation menu