Line 3,857:
Line 3,857:
Let us take a moment to view an old proposition in this new light, for example, the logical conjunction <math>pq : X \to \mathbb{B}</math> pictured in Figure 22-a.
Let us take a moment to view an old proposition in this new light, for example, the logical conjunction <math>pq : X \to \mathbb{B}</math> pictured in Figure 22-a.
−
{| align="center" cellpadding="10" style="text-align:center"
+
{| align="center" cellpadding="6" style="text-align:center"
| [[Image:Venn Diagram F = P And Q.jpg|500px]]
| [[Image:Venn Diagram F = P And Q.jpg|500px]]
|-
|-
−
| <math>\text{Figure 22-a.}~ ~\operatorname{Conjunction}~ pq : X \to \mathbb{B}</math>
+
| <math>\text{Figure 22-a. Conjunction}~ pq : X \to \mathbb{B}</math>
|}
|}
+
+
Each of the operators <math>\operatorname{E}, \operatorname{D} : X^\circ \to \operatorname{E}X^\circ</math> takes us from considering propositions <math>f : X \to \mathbb{B},</math> here viewed as ''scalar fields'' over <math>X,\!</math> to considering the corresponding ''differential fields'' over <math>X,\!</math> analogous to what are usually called ''vector fields'' over <math>X.\!</math>
<pre>
<pre>
−
Each of the operators E, D : X% -> EX% takes us from considering
−
propositions f : X -> B, here viewed as "scalar fields" over X,
−
to considering the corresponding "differential fields" over X,
−
analogous to what are usually called "vector fields" over X.
−
The structure of these differential fields can be described this way.
The structure of these differential fields can be described this way.
To each point of X there is attached an object of the following type:
To each point of X there is attached an object of the following type:
Line 3,885:
Line 3,882:
and we see the differential proposition Wf: EX -> B as a vector field,
and we see the differential proposition Wf: EX -> B as a vector field,
specifically, a field of propositions about contemplated changes in X.
specifically, a field of propositions about contemplated changes in X.
+
</pre>
−
The field of changes produced by E on pq is shown in Figure 22-b.
+
The field of changes produced by <math>\operatorname{E}</math> on <math>pq\!</math> is shown in Figure 22-b.
+
{| align="center" cellpadding="6" style="text-align:center"
+
|
+
<pre>
o-------------------------------------------------o
o-------------------------------------------------o
| |
| |
Line 3,913:
Line 3,914:
| |
| |
o-------------------------------------------------o
o-------------------------------------------------o
−
| f = p q |
+
</pre>
−
o-------------------------------------------------o
+
|-
−
| |
+
| <math>\text{Figure 22-b. Enlargement}~ \operatorname{E}(pq) : \operatorname{E}X \to \mathbb{B}</math>
−
| Ef = p q (dp)(dq) |
+
|-
−
| |
+
|
−
| + p (q) (dp) dq |
+
<math>\begin{array}{rcccccc}
−
| |
+
f
−
| + (p) q dp (dq) |
+
& = & p & \cdot & q
−
| |
+
\\[4pt]
−
| + (p)(q) dp dq |
+
\operatorname{E}f
−
| |
+
& = & p & \cdot & q & \cdot & (\operatorname{d}p)(\operatorname{d}q)
−
o-------------------------------------------------o
+
\\[4pt]
−
Figure 22-b. Enlargement E[pq] : EX -> B
+
& + & p & \cdot & (q) & \cdot & (\operatorname{d}p)~\operatorname{d}q~
+
\\[4pt]
+
& + & (p) & \cdot & q & \cdot & ~\operatorname{d}p~(\operatorname{d}q)
+
\\[4pt]
+
& + & (p) & \cdot & (q) & \cdot & ~\operatorname{d}p~~\operatorname{d}q~\end{array}</math>
+
|}
−
The differential field E[pq] specifies the changes
+
The differential field <math>\operatorname{E}(pq)</math> specifies the changes that need to be made from each point of <math>X\!</math> in order to reach one of the models of the proposition <math>pq,\!</math> that is, in order to satisfy the proposition <math>pq.\!</math>
−
that need to be made from each point of X in order
−
to reach one of the models of the proposition pq,
−
that is, in order to satisfy the proposition pq.
−
The field of changes produced by D on pq is shown in Figure 22-c.
+
The field of changes produced by <math>\operatorname{D}\!</math> on <math>pq\!</math> is shown in Figure 22-c.
+
{| align="center" cellpadding="6" style="text-align:center"
+
|
+
<pre>
o-------------------------------------------------o
o-------------------------------------------------o
| |
| |
Line 3,972:
Line 3,978:
o-------------------------------------------------o
o-------------------------------------------------o
Figure 22-c. Difference D[pq] : EX -> B
Figure 22-c. Difference D[pq] : EX -> B
+
</pre>
+
|}
−
The differential field D[pq] specifies the changes
+
The differential field <math>\operatorname{D}(pq)</math> specifies the changes that need to be made from each point of <math>X\!</math> in order to feel a change in the felt value of the field <math>pq.\!</math>
−
that need to be made from each point of X in order
−
to feel a change in the felt value of the field pq.
−
</pre>
==Note 23==
==Note 23==