Changes

MyWikiBiz, Author Your Legacy — Friday November 22, 2024
Jump to navigationJump to search
→‎Note 22: markup + convert graphics
Line 3,857: Line 3,857:  
Let us take a moment to view an old proposition in this new light, for example, the logical conjunction <math>pq : X \to \mathbb{B}</math> pictured in Figure&nbsp;22-a.
 
Let us take a moment to view an old proposition in this new light, for example, the logical conjunction <math>pq : X \to \mathbb{B}</math> pictured in Figure&nbsp;22-a.
   −
{| align="center" cellpadding="10" style="text-align:center"
+
{| align="center" cellpadding="6" style="text-align:center"
 
| [[Image:Venn Diagram F = P And Q.jpg|500px]]
 
| [[Image:Venn Diagram F = P And Q.jpg|500px]]
 
|-
 
|-
| <math>\text{Figure 22-a.}~ ~\operatorname{Conjunction}~ pq : X \to \mathbb{B}</math>
+
| <math>\text{Figure 22-a. Conjunction}~ pq : X \to \mathbb{B}</math>
 
|}
 
|}
 +
 +
Each of the operators <math>\operatorname{E}, \operatorname{D} : X^\circ \to \operatorname{E}X^\circ</math> takes us from considering propositions <math>f : X \to \mathbb{B},</math> here viewed as ''scalar fields'' over <math>X,\!</math> to considering the corresponding ''differential fields'' over <math>X,\!</math> analogous to what are usually called ''vector fields'' over <math>X.\!</math>
    
<pre>
 
<pre>
Each of the operators E, D : X% -> EX% takes us from considering
  −
propositions f : X -> B, here viewed as "scalar fields" over X,
  −
to considering the corresponding "differential fields" over X,
  −
analogous to what are usually called "vector fields" over X.
  −
   
The structure of these differential fields can be described this way.
 
The structure of these differential fields can be described this way.
 
To each point of X there is attached an object of the following type:
 
To each point of X there is attached an object of the following type:
Line 3,885: Line 3,882:  
and we see the differential proposition Wf: EX -> B as a vector field,
 
and we see the differential proposition Wf: EX -> B as a vector field,
 
specifically, a field of propositions about contemplated changes in X.
 
specifically, a field of propositions about contemplated changes in X.
 +
</pre>
   −
The field of changes produced by E on pq is shown in Figure 22-b.
+
The field of changes produced by <math>\operatorname{E}</math> on <math>pq\!</math> is shown in Figure&nbsp;22-b.
    +
{| align="center" cellpadding="6" style="text-align:center"
 +
|
 +
<pre>
 
o-------------------------------------------------o
 
o-------------------------------------------------o
 
|                                                |
 
|                                                |
Line 3,913: Line 3,914:  
|                                                |
 
|                                                |
 
o-------------------------------------------------o
 
o-------------------------------------------------o
|  f =                 p q                       |
+
</pre>
o-------------------------------------------------o
+
|-
|                                                |
+
| <math>\text{Figure 22-b. Enlargement}~ \operatorname{E}(pq) : \operatorname{E}X \to \mathbb{B}</math>
| Ef =             p  q   (dp)(dq)               |
+
|-
|                                                |
+
|
|          +       p (q) (dp) dq                |
+
<math>\begin{array}{rcccccc}
|                                                |
+
f
|          +     (p) q   dp (dq)               |
+
& = & p & \cdot & q
|                                                |
+
\\[4pt]
|          +     (p)(q)   dp  dq                |
+
\operatorname{E}f
|                                                 |
+
& = p & \cdot & q & \cdot & (\operatorname{d}p)(\operatorname{d}q)
o-------------------------------------------------o
+
\\[4pt]
Figure 22-b.  Enlargement E[pq] : EX -> B
+
& + p & \cdot & (q) & \cdot & (\operatorname{d}p)~\operatorname{d}q~
 +
\\[4pt]
 +
& + & (p) & \cdot &  q & \cdot & ~\operatorname{d}p~(\operatorname{d}q)
 +
\\[4pt]
 +
& + & (p) & \cdot & (q) & \cdot & ~\operatorname{d}p~~\operatorname{d}q~\end{array}</math>
 +
|}
   −
The differential field E[pq] specifies the changes
+
The differential field <math>\operatorname{E}(pq)</math> specifies the changes that need to be made from each point of <math>X\!</math> in order to reach one of the models of the proposition <math>pq,\!</math> that is, in order to satisfy the proposition <math>pq.\!</math>
that need to be made from each point of X in order
  −
to reach one of the models of the proposition pq,
  −
that is, in order to satisfy the proposition pq.
     −
The field of changes produced by D on pq is shown in Figure 22-c.
+
The field of changes produced by <math>\operatorname{D}\!</math> on <math>pq\!</math> is shown in Figure&nbsp;22-c.
    +
{| align="center" cellpadding="6" style="text-align:center"
 +
|
 +
<pre>
 
o-------------------------------------------------o
 
o-------------------------------------------------o
 
|                                                |
 
|                                                |
Line 3,972: Line 3,978:  
o-------------------------------------------------o
 
o-------------------------------------------------o
 
Figure 22-c.  Difference D[pq] : EX -> B
 
Figure 22-c.  Difference D[pq] : EX -> B
 +
</pre>
 +
|}
   −
The differential field D[pq] specifies the changes
+
The differential field <math>\operatorname{D}(pq)</math> specifies the changes that need to be made from each point of <math>X\!</math> in order to feel a change in the felt value of the field <math>pq.\!</math>
that need to be made from each point of X in order
  −
to feel a change in the felt value of the field pq.
  −
</pre>
      
==Note 23==
 
==Note 23==
12,080

edits

Navigation menu