Line 3,855:
Line 3,855:
In the field picture, a proposition <math>f : X \to \mathbb{B}</math> becomes a ''scalar field'', that is, a field of values in <math>\mathbb{B}.</math>
In the field picture, a proposition <math>f : X \to \mathbb{B}</math> becomes a ''scalar field'', that is, a field of values in <math>\mathbb{B}.</math>
−
Let us take a moment to view an old proposition in this new light, for example, the logical conjunction <math>pq : X \to \mathbb{B}</math> that is depicted in Figure 22-a.
+
Let us take a moment to view an old proposition in this new light, for example, the logical conjunction <math>pq : X \to \mathbb{B}</math> pictured in Figure 22-a.
−
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellpadding="10" style="text-align:center"
−
| align="center" |
+
| [[Image:Venn Diagram F = P And Q.jpg|500px]]
−
<pre>
+
|-
−
o-------------------------------------------------o
+
| <math>\text{Figure 22-a.}~ ~\operatorname{Conjunction}~ pq : X \to \mathbb{B}</math>
−
| |
−
| |
−
| o-------------o o-------------o |
−
| / \ / \ |
−
| / o \ |
−
| / /%\ \ |
−
| / /%%%\ \ |
−
| o o%%%%%o o |
−
| | |%%%%%| | |
−
| | P |%%%%%| Q | |
−
| | |%%%%%| | |
−
| o o%%%%%o o |
−
| \ \%%%/ / |
−
| \ \%/ / |
−
| \ o / |
−
| \ / \ / |
−
| o-------------o o-------------o |
−
| |
−
| |
−
o-------------------------------------------------o
−
| f = p q |
−
o-------------------------------------------------o
−
Figure 22-a. Conjunction pq : X -> B
−
</pre>
|}
|}