Changes

MyWikiBiz, Author Your Legacy — Wednesday November 20, 2024
Jump to navigationJump to search
→‎Note 11: del redun + markup
Line 5,962: Line 5,962:  
====Note 11====
 
====Note 11====
   −
<pre>
+
Continuing to draw on the manageable materials of group representations, we examine a few of the finer points involved in regarding the pragmatic maxim as a representation principle.
| Consider what effects that might 'conceivably'
+
 
| have practical bearings you 'conceive' the
+
Returning to the example of an abstract group that we had before:
| objects of your 'conception' to have.  Then,
  −
| your 'conception' of those effects is the
  −
| whole of your 'conception' of the object.
  −
|
  −
| Charles Sanders Peirce,
  −
| "Maxim of Pragmaticism", CP 5.438.
     −
Continuing to draw on the reduced example of group representations,
+
<br>
I would like to draw out a few of the finer points and problems of
  −
regarding the maxim of pragmatism as a principle of representation.
     −
Let us revisit the example of an abstract group that we had befour:
+
{| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 +
|+ <math>\text{Klein Four-Group}~ V_4</math>
 +
|- style="height:50px"
 +
| width="12%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot</math>
 +
| width="22%" style="border-bottom:1px solid black" |
 +
<math>\operatorname{e}</math>
 +
| width="22%" style="border-bottom:1px solid black" |
 +
<math>\operatorname{f}</math>
 +
| width="22%" style="border-bottom:1px solid black" |
 +
<math>\operatorname{g}</math>
 +
| width="22%" style="border-bottom:1px solid black" |
 +
<math>\operatorname{h}</math>
 +
|- style="height:50px"
 +
| style="border-right:1px solid black" | <math>\operatorname{e}</math>
 +
| <math>\operatorname{e}</math>
 +
| <math>\operatorname{f}</math>
 +
| <math>\operatorname{g}</math>
 +
| <math>\operatorname{h}</math>
 +
|- style="height:50px"
 +
| style="border-right:1px solid black" | <math>\operatorname{f}</math>
 +
| <math>\operatorname{f}</math>
 +
| <math>\operatorname{e}</math>
 +
| <math>\operatorname{h}</math>
 +
| <math>\operatorname{g}</math>
 +
|- style="height:50px"
 +
| style="border-right:1px solid black" | <math>\operatorname{g}</math>
 +
| <math>\operatorname{g}</math>
 +
| <math>\operatorname{h}</math>
 +
| <math>\operatorname{e}</math>
 +
| <math>\operatorname{f}</math>
 +
|- style="height:50px"
 +
| style="border-right:1px solid black" | <math>\operatorname{h}</math>
 +
| <math>\operatorname{h}</math>
 +
| <math>\operatorname{g}</math>
 +
| <math>\operatorname{f}</math>
 +
| <math>\operatorname{e}</math>
 +
|}
   −
Table 1.  Klein Four-Group V_4
+
<br>
o---------o---------o---------o---------o---------o
  −
|        %        |        |        |        |
  −
|    ·    %    e    |    f    |    g    |    h    |
  −
|        %        |        |        |        |
  −
o=========o=========o=========o=========o=========o
  −
|        %        |        |        |        |
  −
|    e    %    e    |    f    |    g    |    h    |
  −
|        %        |        |        |        |
  −
o---------o---------o---------o---------o---------o
  −
|        %        |        |        |        |
  −
|    f    %    f    |    e    |    h    |    g    |
  −
|        %        |        |        |        |
  −
o---------o---------o---------o---------o---------o
  −
|        %        |        |        |        |
  −
|    g    %    g    |    h    |    e    |    f    |
  −
|        %        |        |        |        |
  −
o---------o---------o---------o---------o---------o
  −
|        %        |        |        |        |
  −
|    h    %    h    |    g    |    f    |    e    |
  −
|        %        |        |        |        |
  −
o---------o---------o---------o---------o---------o
      +
<pre>
 
I presented the regular post-representation
 
I presented the regular post-representation
 
of the four-group V_4 in the following form:
 
of the four-group V_4 in the following form:
12,080

edits

Navigation menu