| Line 3,708: |
Line 3,708: |
| | |} | | |} |
| | | | |
| | + | To understand what this means in logical terms, it is useful to go back and analyze the above expression for <math>\operatorname{E}f</math> in the same way that we did for <math>\operatorname{D}f.</math> Toward that end, the next set of Figures represent the computation of the ''enlarged'' or ''shifted'' proposition <math>\operatorname{E}f</math> at each of the 4 points in the universe of discourse <math>U = X \times Y.</math> |
| | + | |
| | + | {| align="center" cellpadding="6" width="90%" |
| | + | | align="center" | |
| | <pre> | | <pre> |
| − | To understand what this means in logical terms, for instance, as expressed
| |
| − | in a boolean expansion or a "disjunctive normal form" (DNF), it is perhaps
| |
| − | a little better to go back and analyze the expression the same way that we
| |
| − | did for Df. Thus, let us compute the value of the enlarged proposition Ef
| |
| − | at each of the points in the universe of discourse U = X x Y.
| |
| − |
| |
| | o---------------------------------------o | | o---------------------------------------o |
| | | | | | | | |
| Line 3,727: |
Line 3,725: |
| | | Ef = (x, dx)·(y, dy) | | | | Ef = (x, dx)·(y, dy) | |
| | o---------------------------------------o | | o---------------------------------------o |
| − | | + | </pre> |
| | + | |- |
| | + | | align="center" | |
| | + | <pre> |
| | o---------------------------------------o | | o---------------------------------------o |
| | | | | | | | |
| Line 3,740: |
Line 3,741: |
| | | Ef|xy = (dx)·(dy) | | | | Ef|xy = (dx)·(dy) | |
| | o---------------------------------------o | | o---------------------------------------o |
| − | | + | </pre> |
| | + | |- |
| | + | | align="center" | |
| | + | <pre> |
| | o---------------------------------------o | | o---------------------------------------o |
| | | | | | | | |
| Line 3,754: |
Line 3,758: |
| | | Ef|x(y) = (dx)· dy | | | | Ef|x(y) = (dx)· dy | |
| | o---------------------------------------o | | o---------------------------------------o |
| − | | + | </pre> |
| | + | |- |
| | + | | align="center" | |
| | + | <pre> |
| | o---------------------------------------o | | o---------------------------------------o |
| | | | | | | | |
| Line 3,768: |
Line 3,775: |
| | | Ef|(x)y = dx ·(dy) | | | | Ef|(x)y = dx ·(dy) | |
| | o---------------------------------------o | | o---------------------------------------o |
| − | | + | </pre> |
| | + | |- |
| | + | | align="center" | |
| | + | <pre> |
| | o---------------------------------------o | | o---------------------------------------o |
| | | | | | | | |
| Line 3,782: |
Line 3,792: |
| | | Ef|(x)(y) = dx · dy | | | | Ef|(x)(y) = dx · dy | |
| | o---------------------------------------o | | o---------------------------------------o |
| | + | </pre> |
| | + | |} |
| | | | |
| | + | <pre> |
| | Given the sort of data that arises from this form of analysis, | | Given the sort of data that arises from this form of analysis, |
| | we can now fold the disjoined ingredients back into a boolean | | we can now fold the disjoined ingredients back into a boolean |