MyWikiBiz, Author Your Legacy — Tuesday November 04, 2025
Jump to navigationJump to search
	
	
	
		162 bytes added
	
		,  20:42, 1 May 2009
	
 
| Line 129: | 
Line 129: | 
|   |  |   |  | 
|   | Interpreting the formula <math>\mathit{l}^\mathrm{w}\!</math> as <math>\mathrm{J} ~\text{loves}~ \mathrm{K} ~\Leftarrow~ \mathrm{K} ~\text{is a woman}</math> highlights the form of the converse implication inherent in it, and this in turn reveals the analogy between implication and involution that accounts for the aptness of the latter name.  |   | Interpreting the formula <math>\mathit{l}^\mathrm{w}\!</math> as <math>\mathrm{J} ~\text{loves}~ \mathrm{K} ~\Leftarrow~ \mathrm{K} ~\text{is a woman}</math> highlights the form of the converse implication inherent in it, and this in turn reveals the analogy between implication and involution that accounts for the aptness of the latter name.  | 
|   | + |  | 
|   | + | The operations of the forms <math>x^y = z\!</math> and <math>(x\!\Leftarrow\!y) = z</math> for <math>x, y, z \in \mathbb{B} = \{ 0, 1 \}</math> are tabulated below:  | 
|   |  |   |  | 
|   | {| align="center" cellspacing="6" width="90%"  |   | {| align="center" cellspacing="6" width="90%"  | 
|   | |  |   | |  | 
|   | <math>  |   | <math>  | 
| − | \begin{bmatrix}  | + | \begin{matrix}  | 
|   | 0^0 & = & 1  |   | 0^0 & = & 1  | 
|   | \\  |   | \\  | 
| Line 141: | 
Line 143: | 
|   | \\  |   | \\  | 
|   | 1^1 & = & 1  |   | 1^1 & = & 1  | 
| − | \end{bmatrix}  | + | \end{matrix}  | 
|   | \qquad\qquad\qquad  |   | \qquad\qquad\qquad  | 
| − | \begin{bmatrix}  | + | \begin{matrix}  | 
|   | 0\!\Leftarrow\!0 & = & 1  |   | 0\!\Leftarrow\!0 & = & 1  | 
|   | \\  |   | \\  | 
| Line 151: | 
Line 153: | 
|   | \\  |   | \\  | 
|   | 1\!\Leftarrow\!1 & = & 1  |   | 1\!\Leftarrow\!1 & = & 1  | 
| − | \end{bmatrix}  | + | \end{matrix}  | 
|   | </math>  |   | </math>  | 
|   | |}  |   | |}  |